
1

Blockchain based Resource Governance for
Decentralized Web Environments
Davide Basile 1, Claudio Di Ciccio 1, Valerio Goretti 1 and Sabrina Kirrane 2

1Sapienza University of Rome, Italy
2Vienna University of Economics and Business, Austria
Correspondence*:
Valerio Goretti
valerio.goretti@uniroma1.it

ABSTRACT2

Decentralization initiatives such as Solid, Digi.me, and ActivityPub aim to give data owners3
more control over their data and to level the playing field by enabling small companies and4
individuals to gain access to data, thus stimulating innovation. However, these initiatives typically5
employ access control mechanisms that cannot verify compliance with usage conditions after6
access has been granted to others. In this paper, we extend the state of the art by proposing7
a resource governance conceptual framework, entitled ReGov, that facilitates usage control in8
decentralized web environments. We subsequently demonstrate how our framework can be9
instantiated by combining blockchain and trusted execution environments. Through blockchain10
technologies, we record policies expressing the usage conditions associated with resources and11
monitor their compliance. Our instantiation employs trusted execution environments to enforce12
said policies, inside data consumers’ devices. We evaluate the framework instantiation through a13
detailed analysis of requirements derived from a data market motivating scenario, as well as an14
assessment of the security, privacy, and affordability aspects of our proposal.15

Keywords: Decentralization; Usage Control; Governance; Blockchain; Trusted Execution Environment16

1 INTRODUCTION

Since its development, the internet has steadily evolved into a ubiquitous ecosystem that is seen by many17
as a public utility (Quail and Larabie, 2010). The development of centralized web-based platforms on top18
of the internet has undoubtedly brought benefits from both an economic and a social perspective. However,19
the web as we know it today, is dominated by a small number of stakeholders that have a disproportionate20
influence on the content that the public can produce and consume. The scale of the phenomenon has21
brought about the need for legal initiatives aimed at safeguarding content producer rights (Quintais, 2020).22
In parallel, technical decentralization initiatives such as Solid1, Digi.me2, and ActivityPub3 aim to give23
data owners more control over their data, while at the same time providing small companies as well as24
individuals with access to data, which is usually monopolized by centralized platform providers, thus25
stimulating innovation. To this end, the Solid community are developing tools, best practices, and web26
standards that facilitate ease of data integration and support the development of decentralized social27
applications based on Linked Data principles. In turn, Digi.me are developing tools and technologies28

1 https://solidproject.org/about. Accessed: Thursday 11th May, 2023.
2 https://digi.me/what-is-digime/. Accessed: Thursday 11th May, 2023.
3 https://activitypub.rocks/. Accessed: Thursday 11th May, 2023

1

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://solidproject.org/about
https://digi.me/what-is-digime/
https://activitypub.rocks/

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

that enable individuals to download their data from centralized platforms such that they can store it in an29
encrypted personal data store and leverage a variety of applications that can process this data locally on30
the data owners device. These client-side applications are developed by innovative app developers who31
use the Digi.me software development kit to communicate with the encrypted personal data stores directly.32
Following the same principles, ActivityPub is a decentralized social networking protocol, published by the33
W3C Social Web Working Group that offers a client-server application programming interface (API) for34
adding, modifying, and removing material as well as a federated server-server API for sending notifications35
and subscribing to content. Social networks implementing ActivityPub can be easily integrated with each36
other in order to form a larger ecosystem, commonly referred to as the Fediverse4. Some of the most37
popular Fediverse initiatives include Mastodon5, PeerTube6, and PixelFed7.38

In order to better cater for use case scenarios that involve data sharing across various distributed data39
stores underpinning decentralized applications, there is a need for tools and technologies that are not only40
capable of working with distributed data but are also able to manage data resources that come with a variety41
of usage terms and conditions specified by data producers. However, the vast majority of decentralized web42
initiatives, which aim to provide users with a greater degree of control over personal resources, manage43
data access via simple access control mechanisms (Ouaddah et al., 2016; Toninelli et al., 2006; Tran et al.,44
2005) that are not able to verify that usage conditions are adhered to after access has been granted (Akaichi45
and Kirrane, 2022b). For example, access control rules can determine if users can retrieve data or not.46
However, they cannot express conditions on the type of application that can process them, the geographical47
area in which they can be treated, when the access grant would expire, or the number of times they can be48
processed.49

When it comes to the realization of usage control in decentralized web environments, Trusted Execution50
Environments (TEEs) and Distributed Ledger Technologies (DLTs) could serve as fundamental enablers.51
Trusted execution environments offer data and code integrity to enforce the conditions established by52
decentralized data providers, directly in consumers’ devices. DLTs can store shared policies in a distributed53
ecosystem in which data usage is governed by smart contracts, while recording an immutable log of usage54
operations.55

To this end, in this paper we propose a resource governance (ReGov) conceptual framework and an56
instantiation thereof. ReGov combines blockchain applications and trusted execution environments to57
facilitate usage control in decentralized web environments. The work is guided by a typical decentralized58
web scenario, according to which data are not stored in centralized servers but rather in decentralized data59
stores controlled by users. Throughout the paper, we refer to the component for managing the data stored60
locally on every user’s device as a data node (or node for simplicity).61

In terms of contributions, we extend the state of the art by: (i) proposing a generic resource governance62
conceptual framework; (ii) demonstrating how blockchain technologies and trusted execution environments63
can together be used to manage resource usage; and (iii) assessing the effectiveness of the proposed64
framework via concrete quantitative and qualitative evaluation metrics derived from our data market65
motivating use case scenario.66

4 https://fediverse.party/en/fediverse/. Accessed: Thursday 11th May, 2023.
5 https://docs.joinmastodon.org. Accessed: Thursday 11th May, 2023.
6 https://peertube.uno. Accessed: Thursday 11th May, 2023.
7 https://pixelfed.uno/site/about. Accessed: Thursday 11th May, 2023.

Frontiers 2

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://fediverse.party/en/fediverse/
https://docs.joinmastodon.org
https://peertube.uno
https://pixelfed.uno/site/about

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

The remainder of the paper is structured as follows: Section 2 presents the necessary background67
information regarding data access and usage control, trusted execution environments, decentralized68
applications, and blockchain oracles. In the same section we also provide an overview of related work.69
We introduce the motivating scenario used to guide our work in Section 3 and our ReGov conceptual70
framework in Section 4. Following on from this, we described our DLT and TEE-based instantiation in71
Section 5 and the results of our quantitative and qualitative in Section 6. Finally, we conclude and outline72
directions for future work in Section 7.73

2 BACKGROUND AND RELATED WORK

This section sets the context for the work being presented, highlighting the significance and relevance of74
the study. It also gives credit to previous work in the field and identifies gaps in the current understanding75
that the study aims to fill.76

2.1 Background77

As we leverage blockchain technologies and trusted execution environments to manage resource usage78
control, in the following we provide the necessary background information from these fields.79

2.1.1 Data Access and Usage Control80

Access control is a technique used to determine who or what can access resources in a computing81
environment (Sandhu and Samarati, 1994). In system infrastructures, access control is dependent upon and82
coexists alongside other security services. Such technologies require the presence of a trusted reference83
entity that mediates any attempted access to confidential resources. In order to decide who has rights to84
specific resources, access control frameworks make use of authorization rules, typically stored inside85
the system (Koshutanski and Massacci, 2003). A set of rules constitutes a policy. A popular approach of86
implementing access policies is through Access Control Lists (ACLs) (Grünbacher, 2003). Each protected87
resource has an associated ACL file, which lists the rights each subject in the system is allowed to use to88
access objects.89

With the evolution of the web and decentralized data ecosystems, there is the need to move beyond90
managing access to resources via authorizations (Akaichi and Kirrane, 2022b). Authorization predicates91
define limitations that consider the user and resource credentials and attributes. Usage control is an92
extension of access control whereby policies take into account obligations and conditions in addition to93
authorizations (Lazouski et al., 2010). Obligations are constraints that must be fulfilled by users before,94
during, or after resource usage. Conditions are environmental rules that need to be satisfied before or during95
usage.96

One of the most highly cited usage control models is UCONABC (Park and Sandhu, 2004). The model97
represents policy rules by defining specific rights (e.g., operations to be executed) related to sets of subjects98
(e.g., users who want to perform an operation), objects (e.g., the resource to operate), authorizations,99
obligations, and conditions. Attributes are properties associated with subjects or objects. UCONABC100
improves conventional access control mainly through the following two concepts: (i) attribute mutability,101
namely the change of attributes as a consequence of usage actions, and (ii) decision continuity, i.e., the102
enforcing of policies not only as a check at access request time, but also during the subsequent resource103
usage. Systems implementing usage control through the UCONABC model require dedicated infrastructure104
to guarantee policy enforcement and monitoring in order to detect misconduct and execute compensation105
actions (e.g., penalties and/or right revocations).106

Frontiers 3

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

The literature offers several alternative approaches that could potentially be used to represent usage107
control policies. For instance, Hilty et al. (2007) propose a language named Obligation Specification108
Language (OSL) intended for distributed environments. Bonatti et al. (2020) introduce the SPECIAL109
usage control policy language, which considers a policy as the intersection of basic entities governing data,110
processing, purposes, location, and storage of personal data. A comprehensive overview of existing usage111
control frameworks and their respective languages is provided by Akaichi and Kirrane (2022b) and Esteves112
and Rodríguez-Doncel (2022).113

The overarching goal of our work is to enable usage control in a decentralized environment. We provide114
a conceptual framework that serves as a blueprint for policy governance in a decentralized setting.115

2.1.2 Trusted Execution Environments116

A Trusted Execution Environment (TEE) is a tamper-proof processing environment that runs on a117
separation kernel (McGillion et al., 2015). Through the combination of both software and hardware118
features, it isolates the execution of code from the operating environment. The separation kernel technique119
ensures separate execution between two environments. TEEs were first introduced by Rushby (1981) and120
allow multiple systems requiring different levels of security to coexist on one platform. Thanks to kernel121
separation, the system is split into several partitions, guaranteeing strong isolation between them. TEEs122
guarantee the authenticity of the code it executes, the integrity of the runtime states, and the confidentiality123
of the code and data stored in persistent memory. The content generated by the TEE is not static, and data124
are updated and stored in a secure manner. Thus, TEEs are hardened against both software and hardware125
attacks, preventing the use of even backdoor security vulnerabilities (Sabt et al., 2015). There are many126
providers of TEE that differ in terms of the software system and, more specifically, the processor on which127
they are executed. In this work, we make use of the Intel Software Guard Extensions (Intel SGX)8 TEE.128
Intel SGX is a set of CPU-level instructions that allow applications to create enclaves. An enclave is a129
protected area of the application that guarantees the confidentiality and integrity of the data and code within130
it. These guarantees are also effective against malware with administrative privileges (Zheng et al., 2021).131
The use of one or more enclaves within an application makes it possible to reduce the potential attack132
surfaces of an application. An enclave cannot be read or written to from outside. Only the enclave itself133
can change its secrets, independent of the Central Processing Unit (CPU) privileges used. Indeed, it is not134
possible to access the enclave by manipulating registers or the stack. Every call made to the enclave needs135
a new instruction that performs checks aimed at protecting the data that are only accessible through the136
enclave code. The data within the enclave, in addition to being difficult to access, is encrypted. Gaining137
access to the Dynamic Random Access Memory (DRAM) modules would result in encrypted data being138
obtained (Jauernig et al., 2020). The cryptographic key changes randomly each time the system is rebooted139
following a shutdown or hibernation (Costan and Devadas, 2016). An application using Intel SGX consists140
of a trusted and an untrusted component. We have seen that the trusted component is composed of one or141
more enclaves. The untrusted component is the remaining part of the application (Zhao et al., 2016). The142
trusted part of the application has no possibility of interacting with any other external components except143
the untrusted part. Nevertheless, the fewer interactions between the trusted and untrusted part, the greater144
the security guaranteed by the application.145

Our work resorts to trusted execution environments to keep control of resources’ utilization by enforcing146
the usage conditions set by data owners.147

8 https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html. Accessed: Thursday
11th May, 2023.

Frontiers 4

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

2.1.3 Decentralized Applications and Blockchain Oracles148

With second-generation blockchains, the technology evolved from being primarily an e-cash distributed149
management system to a distributed programming platform for decentralized applications (DApps)150
(Mohanty, 2018). Ethereum first enabled the deployment and execution of smart contracts (i.e., stateful151
software artifacts exposing variables and callable methods) in the blockchain environment through the152
Ethereum Virtual Machine (EVM) (Buterin et al., 2014). The inability of smart contracts to access data153
that is not stored on-chain restricts the functionality of many application scenarios, including multi-party154
processes. Oracles solve this issue (Xu et al., 2016).155

Oracles act as a bridge for communication between the on-chain and off-chain worlds. This means that156
DApps should also be able to trust an oracle in the same way it trusts the blockchain. Reliability for oracles157
is key (Mammadzada et al., 2020; Al-Breiki et al., 2020a). Therefore, the designation and sharing of a158
well-defined protocol become fundamental for the proper functioning of the oracle’s service, particularly159
when the oracles themselves are organized in the form of networks for the interaction with decentralized160
environments (Basile et al., 2021). As illustrated by Mühlberger et al. (2020), oracle patterns can be161
described according to two dimensions: the information direction (inbound or outbound) and the initiator162
of the information exchange (pull- or push-based). While outbound oracles send data from the blockchain163
to the outside, inbound oracles inject data into the blockchain from the outside. Pull-based oracles have164
the initiator as the recipient, oppositely to push-based oracles, where the initiator is the transmitter of165
the information. By combining the push-/pull-based and inbound/outbound categories, four oracle design166
patterns can be identified (Pasdar et al., 2022). A push-based inbound oracle (push-in oracle for simplicity)167
is employed by an off-chain component that sends data from the real world. The push-based outbound168
(push-out) oracle is used when an on-chain component starts the procedure and transmits data to off-chain169
components. The pull-based outbound (pull-out) oracle is operated by an off-chain component that wants170
to retrieve data from the blockchain. Finally, the pull-based inbound (pull-in) oracle enables on-chain171
components to retrieve information outside the blockchain.172

We leverage the blockchain’s tamper-proof infrastructure to record usage conditions associated with173
resources. We represent this information via smart contracts running in the blockchain and communicating174
with off-chain processes through oracles.175

2.2 Related work176

Several works strive to provide more control and transparency with respect to personal data processing177
by leveraging blockchain distributed application platforms (Xu et al., 2019). For instance, Ayoade et al.178
(2018) defines an access control mechanism for IoT devices that stores a hash of the data in a blockchain179
infrastructure and maintains the raw information in a secure storage platform using a TEE. In the proposed180
framework, a blockchain based ledger is used in order to develop an audit trail of data access that provides181
more transparency with respect to data processing. Xiao et al. (2020) propose a system, called PrivacyGuard,182
which gives data owners control over personal data access and usage in a data market scenario.183

The literature offers numerous study cases in which usage control frameworks have been instantiated184
to increase the degree of privacy and confidentiality of shared data. Neisse et al. (2011) propose a usage185
control framework in which a Policy Enforcement Point (PEP) keeps track of business operations and186
intercepts action requests while taking into consideration Policy Decision Point event subscriptions (PDP).187
Bai et al. (2014) addresses usage control in a Web Of Thing environment by adapting the UCON model188
for Smart Home ecosystems. Zhaofeng et al. (2020) introduce a secure usage control scheme for Internet189

Frontiers 5

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

of things (IoT) data that is built upon a blockchain-based trust management approach. While, Khan190
et al. (2020) conceptualizes a distributed usage control model, named DistU, for industrial blockchain191
frameworks with monitoring procedures that are able to revoke permissions automatically.192

Additionally, there are several papers that propose frameworks or architectures that combine blockchain193
platforms and decentralized web initiatives such as Solid web. Ramachandran et al. (2020) demonstrate194
how together Solid data stores (namely, pods) and blockchains can be used for trustless verification with195
confidentiality. Patel et al. (2019) propose a fully decentralized protocol named DAuth that leverages196
asymmetric encryption in order to implement authentication. Cai et al. (2020) introduce a secure Solid197
authentication mechanism, integrating Rivest–Shamir–Adleman (RSA) signatures into permissioned198
blockchain systems. In turn, Becker et al. (2021) demonstrate how data stored in Solid pods can be199
monetized by leveraging a blockchain based payment system. Whereas, Havur et al. (2020) discuss how200
solid could potentially leverage existing consent, transparency and compliance checking approaches.201

Several studies have shown that blockchain and TEEs can profitably coexist. The state of the art proposes202
numerous cases where the combination of the two technologies leads to advantages in terms of data203
ownership, availability, and trust. One of these is the work of Liang et al. (2017), that propose a patient-204
centric personal health data management system with accountability and decentralization. The architecture205
of the framework employs TEEs to generate a fingerprint for each data access that are immutably maintained206
by a blockchain infrastructure. Whereas, Lind et al. (2017) designed and implemented a protocol named207
Teechain that integrates off-chain TEEs for secure and scalable payment procedures, built on top of the208
Bitcoin blockchain platform.209

3 MOTIVATING SCENARIO AND REQUIREMENTS

The motivating use case scenario and the corresponding requirements, discussed in this section, are used210
not only to guide our work but also to contextualize theoretical notions introduced in the paper.211

3.1 Motivating Scenario212

A new decentralized data market called DecentralTrading aims to facilitate data access across213
decentralized data stores. Alice and Bob sign up for the DecentralTrading market, pay the subscription fee,214
and set up their data nodes. Alice is a research biologist in the area of marine science and is conducting215
studies on deep ocean animals. Such species are difficult to identify due to the adverse conditions of their216
ecosystem and the lack of good-quality images. Bob is a professional diver with a passion for photography.217
He has collected several photos from his last immersion and the most scientifically relevant of them portrays218
a recently discovered whale species named ‘Mesoplodon eueu’ showed in Fig. 1.219

Bob shares his photos with the DecentralTrading market by uploading them to his data node. Once the220
images are shared, they can be retrieved by the other participants in the market. Moreover, he wants to221
establish rules regarding the usage of his images. Table 1 illustrates the constraints he exerts on the data222
utilization, along with the rule type they represent (inspired by the work of Akaichi and Kirrane, 2022a).223
Bob makes his images available only for applications belonging to the scientific domain (this constraint224
belongs to the type of domain rules). Moreover, he sets geographical restrictions by making the images225
usable only by devices located in European countries (geographical rule). Finally, Bob wants his photos226
to be deleted after a specific number of application accesses (access counter rule) or after a specific time227
interval (temporal rule). Therefore, he sets a maximum number of 100 local accesses and an expiry date228
of 20 days after the retrieval date. Bob gets remuneration from the DecentralTrading market, according to229

Frontiers 6

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Table 1. Schematization of the usage policy associated with Bob’s ‘Mesoplodon.jpg’ image. Every rule
belongs to a rule type and consists of a subject, an action, an object, and a constraint.

hhhhhhhhhhhhRule type
Rule components Subject Action Object Constraint

Domain rule market members access the resource Mesoplodon.jpg The resource can be
processed only by research
apps

Geographical rule market members access the resource Mesoplodon.jpg The resource can be loaded
only in European countries

Temporal rule market members access the resource Mesoplodon.jpg The resource can be stored
for up to 20 days

Access counter rule market members access the resource Mesoplodon.jpg The resource can be
opened up to 100 times

Figure 1. A photographic representation of a Mesoplodon eueu (Carroll et al., 2021). Image used under
the Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/
4.0/). Cropped from original.

the number of requests for his resources. At any point in time, Bob can ask the DecentralTrading market to230
get evidence that the rules associated with his image are being adhered to and check if there were attempts231
to use his image outside the specified rules.232

Bob’s images of the Mesoplodon eueu species could be extremely useful for Alice’s research, so she233
requests a specific picture of the gallery through her DecentralTrading node. Alice’s node obtains a URL234
for Bob’s node from the market and subsequently contacts Bob’s node in order to retrieve a copy of the235
image, which is stored in a protected location of her device alongside the related usage rules. Data shared236
in DecentralTrading is used by Alice and Bob through a set of known applications approved by the market237
community. Alice opens the image through an app called ‘ZooResearch’, which is used for the analysis238
of zoological images. ‘ZooResearch’ belongs to the set of approved applications, and it disables some239
tasks for data duplication by the operating system (OS) such as screenshots to replicate the image once240
it is accessed. Since the domain of the application corresponds with the usage constraint set by Bob and241
her device is located in Ireland, the action is granted by Alice’s node. Afterwards, Alice tries to share the242
image through a social network application named ‘Socialgram’, which also belongs to the set of supported243
applications. Then, Alice’s node denies the action since it goes against the application domain constraint244
set by Bob. Alice opens the image through ‘ZooResearch’ 99 more times and, following the last attempt,245
the image is deleted from her node since the maximum number of local accesses of 100 has been reached.246
Therefore, Alice asks her DecentralTrading node to retrieve the image from Bob’s node again. Since Alice247
starts working on a different research project, she stops using the Mesoplodon eueu’s image. The image248
remains stored in the protected location of Alice’s node until 20 days from the retrieval date have passed.249
Subsequently, Alice’s node deletes the image from the protected location.250

Frontiers 7

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

3.2 Requirements251

The following concrete requirements are derived from our motivating scenario. The two top level252
requirements, which are inspired by the seminal work of Akaichi and Kirrane (2022b), are subdivided into253
more concrete sub-requirements.254

(R1) Resource utilization and policy fulfillment must be managed by trusted entities. According255
to Akaichi and Kirrane (2022b), a usage control framework must provide an enforcement mechanism256
that ensures usage policies are adhered to both before and after data are accessed. Therefore, the data257
market must be able to able to handle the access control and additionally the nodes of a decentralized258
environment must be equipped with a dedicated component managing the utilization of resources owned259
by other nodes.260

(R1.1) The trusted entity must be able to store resources obtained from other entities. Once resources261
are accessed, they must be kept in a trusted memory zone directly controlled by the trusted entity. This262
requirement drastically reduces the risks of data theft or misuse. Considering our running example, it263
allows Alice to not only store Bob’s resources but also to protect them from unauthorized access.264

(R1.2) The trusted entity must support the execution of programmable procedures that enforce265
constraints associated with resource usage. Specific procedures must be designed in order to cater for266
the various usage policy rules types. The trusted entity must execute these procedures in order to enforce267
policies and control resource utilization. This aspect enables the logic associated with usage control rules,268
such as those defined in Table 1, to be executed when Alice tries to use Bob’s image.269

(R1.3) Resources and procedures managed by the trusted entity must be protected against malicious270
manipulations. The trusted entity must guarantee the integrity of the resources it manages alongside the271
logic of the usage control procedures. Therefore, Alice should not be able to perform actions that directly272
manipulate Bob’s image or corrupt the logic of the mechanisms that govern its use.273

(R1.4) The trusted entity must be able to prove its trusted nature to other entities in a decentralized274
environment. Remote resource requests must be attributable to a trusted entity of the decentralized275
environment. Therefore, prior to Bob sending his image to Alice, it must be possible to verify that the276
data request has actually been generated by Alice’s trusted node.277

(R2) Policy compliance must be monitored via the entities of a governance ecosystem. According to278
Akaichi and Kirrane (2022b), usage control frameworks must incorporate a policy monitoring component.279
The monitoring, performed through one or more services, enables nodes to detect misconduct and280
unexpected or unpermitted usage. This is, e.g., the mechanism thanks to which Bob can verify that Alice281
has never tried to open the picture of the Mesoplodon eueu with Socialgram.282

(R2.1) The governance ecosystem must provide transparency to all the nodes of the decentralized283
environment. In order to gain the trust of the various nodes that comprise a decentralized environment, a284
governance ecosystem must guarantee transparency with respect to its data and procedures. This feature285
enables Bob to verify at any time that the usage policy associated with his image is being adhered to.286

(R2.2) Data and metadata maintained by the governance ecosystem must be tamper-resistant. Once287
policies and resource metadata are sent to the governance ecosystem, their integrity must be ensured.288
The inability to tamper with resources and their metadata is crucial for the effective functioning of the289
governance ecosystem. Therefore, when Bob publishes images and their respective usage policies in the290
market, his node should be the only entity capable of modifying this metadata.291

(R2.3) The governance ecosystem and the entities that the form part of the ecosystem must be292
aligned with the decentralization principles. It is essential that the governance ecosystem itself respects293
the decentralization principles, as centralized solutions would establish a central authority in which data294

Frontiers 8

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Governance Interface

Data Consumption

Node

Governance Ecosystem

Data/Metadata Exchange

Policy management
Policy management

Policy Governance
Policy management

Policy management
Resource Indexing

Data Provision

Governance Interface

Data Consumption

Node

Data ProvisionResource Exchange

Figure 2. High-level overview of the proposed conceptual resource governance (ReGov) framework.

and decisional power are accumulated. Hence, the monitoring functionality provided by the previously295
mentioned market scenario should not rely on centralized platforms and data stores. Bob’s policies for296
the usage of the Mesoplodon eueu’s photo are not uploaded on, nor verified by, any third-party service297
running on a specific server.298

(R2.4) The entities that form part of the governance ecosystem must be able to represent policies299
and verify their observance. In order to provide monitoring functionality, entities in the governance300
ecosystem should be capable of managing usage policies. These entities should enact procedures for301
retrieving policy observance information directly from nodes that consume market resources. This feature302
allows Bob to obtain evidence that Alice is using his image according to the rules stipulated in the usage303
policy and to detect any misbehavior.304

4 CONCEPTUAL RESOURCE GOVERNANCE FRAMEWORK

To cater for our motivating scenario and to meet the derived requirements, we propose a conceptual305
framework, named ReGov, that enables the governance of usage policies in decentralized web environments.306
ReGov generalizes the principles of data ownership and control, which constitute the foundations of307
numerous decentralized web initiatives. The ReGov framework extends these aspects by not only controlling308
data access but also supporting the continuous monitoring of compliance with usage policies and enforcing309
the fulfillment of usage policy obligations. The degree of abstraction of the ReGov framework means that310
it could potentially be instantiated in numerous decentralized web contexts.311

4.1 ReGov Framework Entities312

According to the decentralization concept, the web is a peer-to-peer network with no central authority.313
In this scenario, data are no longer collected in application servers, but rather data are managed by nodes314
that are controlled by users (i.e., data owners determine who can access their data and in what context).315
Nodes communicate directly with other nodes in order to send and retrieve resources via the decentralized316
environment.317

Frontiers 9

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Isolated Environment
Protected Executable Code

Protected Data

Data Provision

Data Consumption

Storage Manager

Monitoring Scheduler

Owned Resources Usage Policies

Node

Governance Interface

Message Receiver

Message Sender

Retrieved Usage Policies Usage Logs

G
at

ew
ay

Resource Storage

Retrieved Resources

Enforcement mechanismEnforcement mechanismEnforcement Mechanisms
Resource Retriever

Data Manager

Resource Provider

Figure 3. Content of the data provision, data consumption and governance interface components.

Figure 2 depicts a high-level overview diagram of the ReGov framework. Nodes are characterized318
by the Data Provision, Data Consumption, and Governance Interface components. Governance319
ecosystems are responsible for indexing web resources, facilitating node and resource discovery, and320
monitoring resource usage. Thus, in our architecture, a Governance Ecosystem is constituted by the321
Resource Indexing and Policy Governance components.322

4.1.1 Components of a Node323

A Node is a combination of hardware and software technologies, running on user devices. As shown in324
Fig. 3, each Node comprises the following components.325

Data provision. The Data Provision component encapsulates the functionality that enable node owners326
to manage the sharing of their resources with other nodes in the decentralized environment. Users can327
interact with the Storage Manager to manually upload their data to the Resource Storage that is328
encapsulated within the Data Provision component. The upload operation also facilitates the definition329
of usage rules that are collected in usage policies associated with resources. Usage policies are represented330
in a machine-readable format (e.g., SPECIAL9 and LUCON10 policy languages) and stored in the Data331
Provision component alongside the resources. Additionally, when a new resource is uploaded, the332
Storage Manager forwards these rules and resource references to the Governance Ecosystem. In333

9 https://ai.wu.ac.at/policies/policylanguage/. Accessed: Thursday 11th May, 2023.
10 https://industrial-data-space.github.io/trusted-connector-documentation/docs/usage_control/. Accessed: Thursday 11th May,
2023.

Frontiers 10

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://ai.wu.ac.at/policies/policylanguage/
https://industrial-data-space.github.io/trusted-connector-documentation/docs/usage_control/

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

order to deliver the stored resources, the Data Provision component offers the logic for a Resource334
Provider that is capable of processing requests that allow other nodes to retrieve data. A data request335
must contain the necessary information to perform the authentication of the sender node. Therefore,336
the Resource Provider is able to authenticate resource requests to decide whether to grant or deny337
access to the requested resource based on the identity of the sender. Several web service protocols could338
potentially be used to implement the functionality offered by the Resource Provider (e.g., HTTP, FTP,339
Gopher). Once data are delivered, node owners can plan sessions to monitor the utilization of provisioned340
resources through the Monitoring Scheduler, which periodically forwards monitoring requests to the341
Governance Ecosystem.342

Referring to our running example, Bob uses the functionality of the Storage Manager inside the Data343
Provision component to upload the images to his Node. During the upload, he specifies the location344
where the images must be stored and the rules composing the images’ Usage Policy (i.e. the image345
must be deleted 20 days after the retrieval date, the image can only be used in European countries).346
Therefore, these pieces of information are delivered to the Governance Ecosystem. The HTTP web347
service implementing the Resource Provider of Bob’s Node enables him to make his resource available348
to the other participants of the DecentralTrading market. The web service authenticates the requests for his349
images to determine whether the sender has the rights to access the resource. Finally, Bob can schedule350
monitoring sessions through the Monitoring Scheduler, in order to get evidence of the usage of his351
images by other nodes.352

Data consumption. The Data Consumption component groups the functionalities that enable nodes353
to retrieve and use data in the network. Data Consumption is built upon both hardware and software354
techniques that ensure the protection of sensitive data through an Isolated Environment that guarantees355
the integrity and confidentiality of protected data and executable code. The Isolated Environment356
contains the logic of a Resource Retriever that creates authenticable requests for data residing in other357
nodes. The Resource Retriever supports multiple web protocols (e.g., HTTP, FTP, Gopher) according358
to the implementation of the Resource Provider inside the Data Provision component. Therefore, if359
the Resource Provider is implemented as an FTP web service, the Request Retriever must be able360
to generate authenticable FTP requests. Once resources are retrieved alongside the related usage policies,361
they are controlled by the Data Manager that stores them in the Isolated Environment. To get access362
to a protected resource, local applications running in the Node must interact with the Data Manager363
via the Gateway, which acts as a bridge to the processes running in the Isolated Environment. The364
Gateway is similarly employed when the Resource Retriever demands new resources from other nodes.365
In turn, Enforcement Mechanisms governing data utilization are necessary to apply the rules of the usage366
policies. While controlling resources, the Data Manager cooperates with these mechanisms enabling the367
rules contained in the usage policies to be enforced. Each operation involving the protected resources is368
recorded in dedicated usage logs whose administration is entrusted by the Data Manager too. Usage logs369
facilitate policy monitoring procedures that employ these registers to detect potential misconduct.370

As shown in the motivating scenario, Alice uses the Data Consumption component to get Bob’s images,371
which she keeps in her own Node. During the resource retrieval process, the Resource Retriever of372
Alice’s Data Consumption component directly communicates with the Data Provision component of373
Bob’s Node through the Gateway. After the retrieval, the image and the associated policy are maintained374
in the Isolated Environment and governed by the Data Manager. Considering the geographical rule,375
when Alice tries to open Bob’s image with a local application, the app interacts with the Gateway, which376
in turn, creates a communication channel with the Data Manager. The latter generates the execution of377

Frontiers 11

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Governance Ecosystem

Policy Governance Resource Indexing

Policy Manager

Monitoring Manager

Usage Policies

Policy Storage

Resource Indexer

Resource Metadata

Index

Figure 4. Content of policy governance and resource indexing components inside the governance
ecosystem

the Enforcement Mechanism of the geographical constraint. This mechanism consults the image’s usage378
policy, retrieves the current geographical position of the Node, and decides whether to grant the action.379

Governance interface. Nodes facilitate communication with the Governance Ecosystem via the380
Governance Interface. As we will see in Section 4.2.2, messages flowing through the Governance381
Interface are crucial for resource usage monitoring. Indeed, the Governance Ecosystem can forward382
the interface messages such as requests for usage logs by remotely interacting with the Message Receiver.383
When a new message is received, the Governance Interface interacts with the other components of384
the Node in order to deliver the information. Similarly, the Data Provision and Data Consumption385
Components make use of the Message Sender to transmit data to the Governance Ecosystem. In order386
to provide continuous communication, the Governance Interface must constantly be active and listening387
for new messages.388

4.1.2 Components of the Governance Ecosystem389

We extend the typical decentralized model by including the Governance Ecosystem, illustrated in390
Fig. 4. The ecosystem hosts the Resource Indexing and Policy Governance components, whose391
multiple instances are able to immutably store data and metadata, execute procedures, and communicate392
with all the nodes of the decentralized environment.393

Policy governance. Policy Governance components provide shared Policy Storage in which data394
owners publish applicable usage policies associated with resources. Policies are uploaded and modified395
through the Policy Manager of the component. In addition to their storage capabilities, Policy396
Governance components are able to execute procedures for policy monitoring. This function is supported397
by the Monitoring Manager of the component, containing the logic to verify the compliance of398
the policies stored inside the Policy Storage. Therefore, nodes forward monitoring requests to the399
Monitoring Manager which keeps track of resource usage and detects any illicit behavior.400

Resource indexing. Policies are associated with resources through Resource Indexing components.401
They contain metadata about the resources shared in the decentralized environment (e.g., identifiers, web402
references, owner node). When data owners upload new resources in their node, it interacts with the403
Resource Indexer of these components, in order to serialize the information of the shared data.404

Referring to our running example, when Bob uploads his image to his Node and specifies the405
corresponding usage rules in its policy, his Node shares the image metadata (e.g., the HTTP reference406
https://BobNode.com/images/Mesoplodon.jpg) and the usage policy with respectively the Resource407
Indexing and Policy Governance components running in the Governance Ecosystem. After Bob has408
delivered his ‘Mesoplodon.jpg’ image to Alice’s Node, he can demand the verification of the image’s409

Frontiers 12

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Data Provision

Data Consumption

G
ov

er
na

nc
e

In
te

rfa
ce

Node (Owner)

Data Provision

Data Consumption

G
ov

er
na

nc
e

In
te

rfa
ce

Node (Consumer)

1

2

3

Figure 5. Visualization of the ReGov framework data retrieval process.

utilization to the Policy Governance component holding the image’s policy. The Policy Governance410
component retrieves the usage log of the image from Alice’s device, by interacting with her Node. Finally,411
Alice’s usage can be verified based on the content of the usage log.412

4.2 Predominant ReGov Framework Operations413

Now that we have introduced the entities of our ReGov framework, we detail the predominant framework414
operations: data retrieval and monitoring. In the following, we simplify the processes by distinguishing415
owner nodes (i.e., nodes that are assuming the role of data providers) from data consumer nodes (i.e., nodes416
that are requesting access to and using resources), however, in practice, all nodes are dual purpose.417

4.2.1 Data Retrieval418

The data retrieval process allows consumer nodes to retrieve a resource from the decentralized419
environment. Figure 5 depicts a diagram representing the process. In order to obtain a specific resource, the420
data consumer Node generates a new request and sends it to the owner Node. We assume the consumer421
Node already has the information needed to contact the owner node (e.g., IP address or web reference).422
This information can be obtained by reading resource metadata maintained by Resource Indexing423
components running in the governance ecosystem. The process starts when the Resource Retriever424
inside the Data Consumption component of the consumer Node formats the request specifying the425
resource to be accessed and additional parameters intended for verification purposes. Subsequently,426
the request leaves the Isolated Environment through the Gateway and is received by the Resource427
Provider inside the Data Provision component of the owner node (1). The latter uses the parameters428
of the request to verify the identity of the sender Node (2). At this stage, the Resource Provider also429
verifies that the request has been generated in the Isolated Environment of a Data Consumption430
technology. Requests generated by alternative technologies are rejected. Once verified, the Resource431
Provider decides whether to grant access to the resource, according to the identity of the sender Node. If432
access is granted, the resource provider interacts with the Storage Manager inside the Data Provision433
component in order to construct the response, which includes both the requested resource and its usage434
policy. Finally, the Resource Retriever of the consumer Node obtains the resource, stores it in the435
Isolated Environment and registers it with the local Data Manager (3), as described in Section 4.1.1.436

4.2.2 Monitoring437

The policy monitoring process is used to continuously check if usage policies are being adhered to. In438
Fig. 6, we schematize the monitoring procedure. The owner node initiates the process via a scheduled439
job. Therefore the Monitoring Scheduler in the Data Provision component employs the Message440
Sender of the Governance Interface (1) to send a monitoring request, regarding a specific resource, to a441
Policy Governance component running in the Governance Ecosystem (2). Subsequently, the Policy442

Frontiers 13

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Data Provision

Data Consumption

G
ov

er
na

nc
e

In
te

rfa
ce

Node (Owner)

Data Provision

Data Consumption

G
ov

er
na

nc
e

In
te

rfa
ce

4a

5b

5a

3c

6

Node (Consumer)

Data Provision

Data Consumption

G
ov

er
na

nc
e

In
te

rfa
ce

4b

Node (Consumer)

Data Provision

Data Consumption

G
ov

er
na

nc
e

In
te

rfa
ce

4c

Node (Consumer)

Policy governance

Governance
Ecosystem

Policy governancePolicy Governance

5c

3b2

3a

1

7

Figure 6. Visualization of the ReGov framework data monitoring routine.

Governance component forwards the request to provide evidence of utilization to each consumer Node that443
has a copy of the resource (3a, 3b, 3c). In the depicted monitoring routine, we assume the resource whose444
usage must be monitored is held by three consumer nodes. In each of these nodes, the monitoring request445
is received by the Message Receiver of the Governance Interface that forwards, in turn, the request446
to the Data Manager running in the Isolated Environment inside the Data Consumption component447
(4a, 4b, 4c). The latter retrieves the usage log from the protected data storage and employs the Message448
Sender of the Governance Interface to forward the information to the Governance Ecosystem,449
which in turn ensures that all the consumer node responses are collected (5a, 5b, 5c). Finally, the evidence450
are returned to the Message Receiver (6) of the initiator Node, which delivers the information to the451
Monitoring Scheduler (7).452

5 BLOCKCHAIN AND TRUSTED EXECUTION ENVIRONMENT INSTANTIATION

In this section, we describe an instantiation of the ReGov framework. To this end, we propose a453
prototype implementation of the DecentralTrading data market illustrated in the motivating scenario.454
The implementation integrates a trusted application running in a trusted execution environment and455
blockchain technologies to address usage control needs. The code is openly available at the following456
address: https://github.com/ValerioGoretti/UsageControl-DecentralTrading.457

In Fig. 7, we visualize the architecture of our ReGov framework instantiation. As shown in Section 4,458
the general framework assumes nodes of the decentralized environment are characterized by separate459
components dealing with Data Provision and Data Consumption. The Data Provision functionality460
is implemented in a software component we refer to as a Personal Online Datastore. We leverage461
security guarantees offered by the Intel SGX Trusted Execution Environment in order to implement462

Frontiers 14

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://github.com/ValerioGoretti/UsageControl-DecentralTrading

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

EVM Blockchain

Personal Online Datastore

Off-chain Oracle Components

On-chain Oracle Components

Private Key :

Public Key : 0x2AD5Cc250cc493...

6eaf2cc7782d6ed1ze...

Personal Online Datastore

Off-chain Oracle Components

Private Key :

Public Key : 0x5ZF2Be527wt864...

542bc886f46562191...

Smart Contract Interaction

DTobligations
Smart Contract

Node A Instance

Node BNode A

HTTP
Communication

DTindexing
Smart Contract

DTobligations
Smart Contract

Node B Instance

Trusted Application

Intel SGX
Trusted Execution Enrvironment

Trusted Application

Intel SGX
Trusted Execution Enrvironment

Figure 7. High-level architectural overview of our ReGov framework instantiation.

a Trusted Application containing the logic for Data Consumption. The Governance Ecosystem is463
realized by developing blockchain smart contracts that store information and execute distributed procedures.464
Our implementation involves an EVM Blockchain11 (i.e., a blockchain based on the Ethereum Virtual465
Machine) which hosts the DTindexing and DTobligations smart contracts. They fulfill the functions of466
the Resource Indexing and Policy Governance components of the general framework, respectively.467
DTindexing is characterized by a unique instance managing the resource metadata of the decentralized468
environment. Instead, DTobligations is designed to be deployed multiple times. Therefore, each Node is469
associated with a specific instance of this smart contract that stores the rules for its resources. The470
tasks performed by the Governance Interface are executed by blockchain oracles that provide a471
communication channel between the blockchain and the nodes of the decentralized environment. Oracles472
consist of On-Chain components, running in the EVM Blockchain, and Off-Chain components, operating473
within each Node. We built the resource retrieval process between nodes using the HTTP communication474
standard. By interacting with smart contracts, nodes exchange metadata necessary for resource indexing475
and monitoring procedures.476

Our implementation employs the asymmetric encryption methodology that underlies the EVM477
Blockchain, in order to provide an authentication mechanism for the environment’s nodes. Each Node478
is uniquely related to a public and private key pair that is used to sign authenticable data requests and479
transactions that transmit information to the blockchain and execute smart contract functions. A private key480
is a 256-bit number generated through a secure random number generator. The corresponding public key is481
derived from the private key through the Elliptic Curve Digital Signature Algorithm (Johnson et al., 2001).482
The public key is connected to a unique account address on the EVM Blockchain derived as a 160-bit483
segment of the hash digest of the public key. In our setting, Nodes store their private key in an encrypted484
format to increase the degree of confidentiality of this information.485

11 Ethereum Virtual Machine (EVM): https://ethereum.org/en/developers/docs/evm/. Accessed: Thursday 11th May, 2023.

Frontiers 15

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://ethereum.org/en/developers/docs/evm/

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

In the following, we describe the technical details of the individual aspects of our implementation.486
In particular, we focus on features inherent to resource governance (data retrieval, enforcement, and487
monitoring) and avoid the implementation details related to the data market logic (e.g., subscription488
payments and remuneration mechanisms).489

5.1 Usage Policy Instantiation490

The first step of the instantiation process involves the definition of rule types that are used to stipulate491
usage policies. While our approach allows for a wide range of rules, we establish a specific subset of rules492
to demonstrate the capabilities of our ReGov framework. In particular, we propose four types of rules493
inspired by the work of Akaichi and Kirrane (2022a). Each rule assumes that the target resource has already494
been retrieved and stored on the consumer device. In the following, we explain the various rule types that495
have already been introduced in the motivating scenario detailed in Section 3.1.496

Temporal rules. Through a temporal rule, data owners establish the maximum time a resource can be497
maintained within a consumer device. The rule is parameterized through an integer value representing the498
duration in seconds. Once the term expires, the rule stipulates that the resource must be deleted.499

Access counter rules. An access counter rule specifies a maximum number of local accesses that can be500
executed for a specific resource, after which, the resource must be deleted. The rule is parameterized with501
an integer value that defines the maximum number of accesses.502

Domain rules. The domain rule represents the purpose for which a resource can be opened. It is503
characterized by an integer value that identifies groups of applications that share the same domain. Known504
applications that are part of the domain group can execute local access to the resource.505

Geographical rules. A geographical constraint is a limitation on where a resource can be used. It is506
indicated by an integer code that specifies the territory in which the resource can be utilized.507

5.2 Personal Online Data Stores for Data Provision508

We develop the Personal Online Datastore prototype using the Python language. Python’s support509
for the Web3.py library12 enables the creation of communication protocols with the blockchain platform510
acting as the Governance Ecosystem of the decentralized environment. Our implementation also includes511
a graphical user interface developed with the Tkinter library13. As shown in Fig. 8, our Personal Online512
Datastore implementation is composed of three main parts: the Application, the Web Service and513
the Resource Storage. The app module contains the executable code implementing the graphical user514
interface.515

5.2.1 Resource Storage516

The resource storage contains the resources of the Personal Online Datastore. The storage location517
is characterized by two meta-files named DTconfig.json and DTobligations.json. They contain518
descriptive and confidential information about the Personal Online Datastore and its resources.519
DTconfig.json includes various attributes of a Personal Online Datastore, such as its unique520
identifier, its node’s public and private keys, the web reference to access data, and a list of the initialized521
resources. DTobligations.json holds rules that apply to the resources of the storage. The user can522
establish a default policy inherited by all resources in the Personal Online Datastore, except those523

12 https://web3js.readthedocs.io/en/v1.8.1/. Accessed: Thursday 11th May, 2023.
13 https://docs.python.org/3/library/tk.html. Accessed: Thursday 11th May, 2023.

Frontiers 16

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://web3js.readthedocs.io/en/v1.8.1/
https://docs.python.org/3/library/tk.html

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Resource Storage

DTconfig.json DTobligations.json

Personal Online Datastore

Resources

Web Service

Application

app.py

DTpod_service.py DTauthenticator.py

Figure 8. Schematization of the personal online datastore implementation.

with specific policies. Mentioning our running example, Bob interacts with the Personal Online524
Datastore application to upload the ‘Mesoplodon.jpg’ resource in the ‘/images’ location inside the525
storage. During this process, Bob can establish the rules associated with the image. The initialization of the526
image generates the metadata to be held in the DTconfig.json and DTobligations.json metafiles.527

5.2.2 Web Service528

The implementation of the data provision process is built upon the HTTP web standard. Our Personal529
Online Datastore prototype implements a Web Service that listens for HTTP requests, verifies530
the authenticity of the sender Node, and delivers the requested data through HTTP responses. This531
approach enables the efficient and on-demand provision of initialized data. In Fig. 9, we summarize532
the main stages of the data provision process, taking place in our Web Service implementation. The533
DTpod_service Python class contains the core functionality for resource delivery. The class extends534
BaseHTTPRequetsHandler that enables the processing of GET and POST requests. Due to confidentiality535
reasons, the Web Service of the Personal Online Datastore only responds to POST Requests and536
ignores GET ones. The data provision process starts with the Parameter Extraction, which takes537
place when a new POST Request is received by the Web Service. The parameters inside the body of the538
POST Request are crucial for the authentication and remote attestation procedures. In order to correctly539
demand a resource, requests must specify a URL composed of the web domain name of the service540
followed by the relative path of the requested resource inside storage. In the case of the motivating scenario,541
to retrieve Bob’s image, Alice’s node must generate an authenticable POST Request, whose URL is542
‘https://BobNode/images/Mesoplodon.jpg’.543

Through remote attestation, the Web Service can verify that the resource request has been legitimately544
generated by a Trusted Application running a Intel SGX Trusted Execution Environment of545
a Node. Therefore, we leverage the Intel SGX Remote Attestation Verification to establish a546
trusted communication channel between the consumer and the owner nodes. Once the attestation procedure547
ends successfully, the Web Service can be assured that the content of its response is managed by a Data548
Consumption technology inside the decentralized environment.549

Sender Authentication takes place after the successful outcome of the remote attestation verification.550
The logic of our authentication mechanism is implemented through the DTauthenticator class, whose551

Frontiers 17

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Personal Online Datastore

Parameters Extraction

Intel SGX
Remote Attestation Verification

Sender Authentication

Sender Rights Evaluation

Response Processing

POST Request

Web Service

Response

Figure 9. Main stages of the ReGov data provision instantiation process.

purpose is to use the auth_token (a message signed with the sender’s credentials) and claim (the552
public key of the sender) parameters inside the POST Request to determine the sender Node’s identity.553
Specifically, auth_token refers to the URL of the resource to be accessed, encrypted with a private key.554
DTauthenticator is able to extract a public key from the auth_token parameter when the request is555
received. If the extracted public key is equal to the claim parameter, the identity of the sender Node is556
confirmed. At the end of the authentication procedure, Bob’s Web Service identifies the sender of the557
request as Alice’s Node.558

The determined identity is subsequently evaluated by the Web Service during the Sender Rights559
Evaluation to determine whether the consumer Node can access the resource. Because our instantiation560
considers the decentralized environment related to the DecentralTrading data market (mentioned in561
Section 3), this step establishes whether the sender Node is associated with an active subscription (e.g.,562
if Alice has an active subscription). However, the evaluation of alternative criteria, such as organization563
membership, can be freely integrated depending on the specific use case. In all cases, it is crucial to564
keep track of the consumer nodes that have accessed the Personal Online Datastore’s resources by565
establishing their identity.566

Once the POST Request has passed the necessary checks, the Response Processing takes place.567
Therefore, the Web Service then interacts with the local storage to retrieve the requested resource, which,568
along with the associated policy, are inserted into the Response.569

5.3 Trusted Execution Environment for Data Consumption570

The Trusted Execution Environment manages the resources recovered within the consumer node.571
In Fig. 10, we propose a schematization of our Trusted Application implementation. The trusted572
application consists of two fundamental components: the Trusted Part and the Untrusted Part. The573
Trusted Part comprises one or more enclaves. The Enclave’s code is in the enclave.cpp file. It574

Frontiers 18

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

enclave.cpp

Usage Policies

Intel SGX Trusted Application

Intel SGX Trusted Execution Environment

Untrusted Part Trusted Part

app.cpp

Protected File System

ECALL

OCALL Enforcement Mechanisms

Retrieved
resources

Usage Logs

Application Interfaces Protected Filesystem
Operations

Figure 10. Schematization of our trusted application composed of both trusted and untrusted elements.

includes all the implementations of the Enforcement Mechanisms and a set of Protected File System575
Operations to handle the resources stored in it. The Trusted Part cannot communicate directly with576
the outside world. Any pieces of information that enter or leave the Trusted Part pass through the577
Untrusted Part. The Untrusted Part’s code is in the app.cpp file. This application has multiple578
Application Interfaces that are used to expose the application to the outside world. In order to579
communicate, the two parts use dedicated functions called Ecall and Ocall. ‘Ecall’ stands for Enclave580
Call and represents an invocation made by a function in the Untrusted Part to the Enclave (Trusted581
Part). The term ‘Ocall’ (Out Call) refers to a call from the Enclave to the Untrusted Part.582

5.3.1 Data Protection583

The main purpose of using the Trusted Application is to manage and protect the data of other users584
obtained from the market. The Retrieved Resources are stored within the Enclave, more specifically585
in its Protected File System, because in this way they are decrypted only within the processor and586
only the enclave itself can access the processor in order to decrypt it. Within the enclave, both the587
Resources Retrieved by the user and the Usage Policies set by the owner are stored. Storing the588
Retrieved Resource within the Trusted Part is essential both from a data protection and a usage589
control perspective. In addition, the Usage Policy chosen by the data owner must also be saved in a590
secure space, as it could be tampered with by malicious code in order to be bypassed.591

Protection of usage data. When a user requests a piece of data, the request is received by the dedicated592
Application Interface in the Untrusted Part, and it is retrieved from the market. For instance,593
when Alice requests a photo of a Mesoplodon eueu from Bob, an identifier is assigned to this data before it594
is stored in the Enclave. The identifier associated with the resource is used to index the retrieved resources595
and store them within the trusted part. A copy of the policies set by the owner, the rules set by Bob for the596
photo, is associated with it in order to store all the necessary resource information in the enclave. More597
specifically, when Alice wants to retrieve a piece of data from Bob, she interacts with the Untrusted Part598
and sends a post HTTP request to Bob’s node. Within the request parameters, the resource in which the599
consumer is interested is specified, and an identifier is provided with which the consumer gets authenticated600

Frontiers 19

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

(as described in Section 5.2.2). Finally, a certificate provided by Intel SGX Remote Attestation is added to601
the request, providing evidence that the request comes from a Trusted Application. Once the Personal602
Online Datastore ensures that the other party involved in the communication is trusted, it sends the603
resource and policy information via an HTTP reply. Since the Trusted Part cannot communicate with604
the outside world, the response reaches the Untrusted Part who forwards it via an Ecall to the Trusted605
Part. Once the resource arrives at the Trusted Part, it stores the data sent from the Personal Online606
Datastore in the Enclave using the Protected File System Operations that allow the Enclave607
to manage the Protected File System. Based on the example scenario, at this point the photo of the608
Mesoplodon eueu and the related Usage Policies set by Bob, the owner, are stored within Alice’s609
Enclave.610

Protection of log data. To keep track of the correct use of resources, all actions performed on them611
within the Trusted Part are stored in a usage log file. In short, all actions concerning the retrieved612
resources are stored. The objective is to let the data owner initiate a monitoring procedure through an613
oracle, to check whether resources are used in accordance with usage conditions. When the Untrusted614
Part receives a monitoring request from the blockchain, it performs an Ecall to request a copy of the615
Usage Log file stored in the Enclave and returns it to the blockchain through an oracle to perform the616
monitoring. Referring to the example, all actions performed by Alice are recorded in a Usage Log file, and617
when Bob wants to check that everyone is using their resource correctly, he starts a monitoring procedure618
that aims to check all the Usage Log files of consumers who have retrieved the Mesoplodon eueu photos.619
When the Usage Log file is requested to be monitored, before sending a copy, the Trusted Part enters620
an entry to keep track of the monitoring request.621

5.3.2 Implementation of the Enforcement Mechanisms622

In order to guarantee that data are accessed and used according to usage policies when a resource from623
the Trusted Part of a Trusted Application is requested by an external application, enforcement624
mechanisms must be implemented. These mechanisms are implemented within the Enclave to ensure625
they are executed within a Trusted Environment.626

Receiving a request for access to a resource stored in the trusted application. Before proceeding627
with the Enforcement Mechanisms, when the external application makes a request to the Trusted628
Application, the latter asks the external application to identify itself in order to check whether the sender629
is who it declares to be. More specifically, the Untrusted Part receives a request for access to a resource630
via the Application Interfaces and forwards it to the Trusted Part through an Ecall by invoking631
the access_protected_resource function, which verifies the identity of the claimant. Referring to632
the example, when Alice uses the ‘Zooresearch’ or ‘Socialgram’ applications, they have to authenticate633
themselves.634

Retrieval of the requested resource and its usage policy. Once the external application has been635
authenticated, the Trusted Application gathers all the necessary information about it and accepts636
the request for the data that the external application is interested in and starts checking whether it is637
possible to access and use the resource. First, the access_protected_resource function retrieves the638
requested data and the associated policies, using the get_policy function, set by the owner. Then, the639
access_protected_resource function invokes the different enforcement modules, passing the retrieved640
policies to it, in order to ensure that the rules are satisfied. In our implementation, four different enforcement641
modules have been developed. The proposed approach is highly flexible, thus catering for the extension642

Frontiers 20

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

of the existing rule types. The first mechanism in the enforcement process is checking the geographical643
position of the device.644

Geographical rule enforcement. The enforce_geographical function is invoked and passed the policy645
for the requested resource. The get_geo_location function (Ocall) is then used to retrieve the geographic646
location of the device from which the resource is being accessed. In the end, the geographic data set by647
the user and the current location are compared. If the position is correct, a positive result is returned to648
the access_protected_resource function, otherwise access is denied. Referring to the scenario, the649
Trusted Application uses Alice’s location to check if it meets the location stipulated by Bob in his650
usage policy.651

Domain rule enforcement. The access_protected_resource function invokes the enforce_domain652
function by passing it the policy of the requested resource and information about the requesting653
application. Following a comparison between the application’s domain and the domain set by the654
resource owner, if the domains are equal, the enforce_domain function returns a positive result to655
the access_protected_resource function, which proceeds to the next check. Otherwise, access to the656
resource is denied. Looking at the example scenario, the domain of the application used by Alice is checked657
to determine if it satisfies the usage domain set by Bob. If Alice’s application domain is correct, a positive658
result is returned.659

Access counter rule enforcement. The enforce_access_counter function is called by the660
access_protected_resource function with the policy for the requested resource. If the number of661
remaining accesses is greater than 1, the function decrements the maximum number of remaining accesses662
for that resource and returns with success to the access_protected_resource function. If the number of663
remaining accesses is equal to 1, the function removes the resource and related policies from the Enclave664
before returning a positive value, as the resource can no longer be accessed. In the motivating scenario,665
Bob set 100 as the maximum number of accesses to the resource. Each time Alice makes a request and666
logs in, the maximum number of hits left decreases. When the counter becomes 1, Alice is allowed a last667
access to the Mesoplodon eueu’s photo, and then the resource is deleted from her Trusted Application.668
Then, having successfully completed all the enforcement, the access_protected_resource function669
forwards the contents of the file to the Untrusted Part, which forwards it to the external requesting670
application. As already mentioned, all actions performed on the resources in the trusted application are671
saved on a Usage Log file, which keeps information and accesses made on the resources from when it is672
retrieved until it is deleted, maintaining an overview of the use of the resource. This Usage Log file makes673
it possible to prove and check that all resources have been used correctly within the trusted application.674

Temporal rule enforcement. When it comes to temporal rules, the Untrusted Part periodically invokes675
the Ecall function called enforce_temporal to verify that all resources within the trusted part have not676
expired. The enforce_temporal function uses the get_trusted_time function to retrieve the current677
day. It then reads all resource policies stored within the Trusted Part and checks whether the date set678
on the policy is later than the current date. If a resource has expired, the enforce_temporal function679
removes it. Each time this type of check is performed, it is written to the Usage Log file, and all deletions680
are also saved.681

5.4 Blockchain as a Governance Ecosystem682

In our instantiation, we leverage blockchain smart contracts in order to realize the Governance683
Ecosystem. Transparency, distribution, and immutability are the key features that make this technology684
highly suitable for our needs. The DecentralTrading implementation leverages the EVM Blockchain685

Frontiers 21

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

platform hosting several interconnected smart contracts. Nodes of the decentralized environment that are686
equipped with confidential blockchain public and private keys, sign authenticate transactions that generate687
the execution of smart contract functions. Processes that involve data exchange between Nodes and smart688
contracts are supported by blockchain oracles.689

We implemented the smart contracts using the Solidity programming language14. The smart contracts690
have been deployed in a local environment powered by the Ganache tool15 which enables the execution691
of a local blockchain replicating the Ethereum protocol and supporting the generation of transactions692
for testing purposes. In the following, we present the implementation details regarding the DTindexing693
and DTobligations smart contracts that fulfill the functionality of the Resource Indexing and Policy694
Governance components respectively.695

5.4.1 DTindexing Smart Contract696

The DTindexing smart contract caters for the initialization of shared resources in the decentralized697
environment. The main goal of this component is to keep track of the decentralized environment’s data.698
Owner nodes interact with the smart contract to index their Personal Online Datastore, sharing the699
necessary metadata for data retrieval. Consumer nodes make use of the smart contract to find references for700
registered resources through search functionality. Table 2 represents the class diagram of the smart contract.701
The smart contract saves the following variables in the Pod struct in order to keep track of the information702
about personal online datastores:703

struct Pod { int id; address owner; bytes baseUrl; bool isActive; }704

Similarly, the contract stores information about resources in a Resource struct, which consists of the705
following:706

struct Resource{ int id; address owner; int podId; bytes url; bool isActive; }707

The Pod and Resource structs are stored in the podList and resourceList array variables, respectively.708
The contract includes several methods for interacting with online datastores and resources, including709
the ability to register new ones, deactivate existing ones, and to search for them based on various710
criteria. For example, the registerPod method allows nodes to initialize new personal online datastores711
in the network. It takes as input a web reference for the online datastore service and the public712
key of the owner Node. The function creates a new Pod struct and stores it in the podList. It713
also deploys a DTobligations smart contract (discussed next in detail), as every Personal Online714
Datastore is related to one of these contracts. Finally, the function emits a NewPod event containing715
the identifier and the address of the DTobligations smart contract for the new online datastore.716
In our running example, Bob’s node invokes this function to initialize his new Personal Online717
Datastore providing the web reference https://BobNode.com/ among the arguments. The function,718
in turn, generates a new Pod struct. The registerResource method works similarly, generating a719
new Resource object and storing it in the resourceList state variable. In this case, Bob’s Personal720
Online Datastore employs this function to initialize the ‘Mesoplodon.jpg’ image providing metadata721
such as the https://BobNode.com/images/Mesoplodon.jpg url. The deactivateResource and722
deactivatePod methods ensure that personal online datastores and resources are no longer accessible.723
Nodes submit metadata referring to new datastores and resources by using push-in oracles, that enable724

14 https://docs.soliditylang.org/en/v0.8.17/. Accessed: Thursday 11th May, 2023.
15 https://trufflesuite.com/ganache/. Accessed: Thursday 11th May, 2023.

Frontiers 22

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://docs.soliditylang.org/en/v0.8.17/
https://trufflesuite.com/ganache/

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Table 2. Class diagram of the DTindexing smart contract.
DTindexing

private podsCounter: int
private resourceCounter: int
private dtSubscription: int
private podList: Pod[]
private resourceList: Resource[]
private searchByType(tp: PodType): Pod[]
<<event>> NewPod(idPod: int, obgliationAddress: address)
<<event>> NewResource(idResource: int)
<<modifier>> validPodId(id: uint, owner: address)
public getMedicalPods(idSubscription: uint): Pod[]
public getSocialPods(idSubscription: uint): Pod[]
public getFinancialPods(idSubscription: uint): Pod[]
public registerPod(newReferene: bytes, podType: PodType, podAddress: address): int
public registerResource(podId: int, newReferene: bytes, idSubscription: uint): int <<validPodId>>
public getPodResources(podId: int, idSubscription: int): Resource[]
public deactivateResource(idResource: int): Resource <<validResourceId>>

sending information to the blockchain. The smart contract also offers various search functions that can725
be useful for consumer nodes. The getPodResources method allows users to obtain a list of Resource726
structs stored in a specific datastore, identified by its integer identifier. The getResource method accepts727
an integer identifier as input and returns the Resource struct with that identifier. Referring to our use728
case scenario, Alice uses getPodResources to read the image’s identifier that is given as a parameter to729
getResource, thanks to which the associated web reference is retrieved.730

5.4.2 DTobligations Smart Contract731

We use the DTobligations smart contract to model usage policies inside the blockchain environment732
and execute their monitoring. The architecture of the implementation assumes the deployment of multiple733
instances of the smart contract, one for each Personal Online Datastore in the network. Each734
DTobligations smart contract is associated with a specific Personal Online Datastore that is the735
only entity allowed to establish and manage the rules associated with the stored resources. As we showed736
in our motivating scenario, the architecture of our implementation assumes the deployment of a dedicated737
DTobligations instance containing the rules for Bob’s Personal Online Datastore. In Table 3, we738
propose the class diagram of the DTobligations smart contract.739

The DTobligations smart contract includes four structs, each of which, models a specific rule:740
AccessCounterObligation, which restricts the number of resource accesses on a client device;741
CountryObligation, which imposes restrictions on the countries in which a resource can be742
used; DomainObligation, which specifies the purposes for which resources can be used; and743
TemporalObligation, which imposes a maximum duration for resource storage. These are stored in744
an ObligationRules struct, which can apply to a specific resource or to the entire Personal Online745
Datastore. The smart contract includes functions that allow nodes to set default rules for their Personal746
Online Datastore and related resources. For instance, the addDefaultAccessCounterObligation747
and addDefaultTemporalObligation are used to set rules that are inherited by all the resources of748
the Personal Online Datastore. Similarly, functions such as addAccessCounterObligation and749
addTemporalObligation establish rules that are applied to a specific resource of the datastore. Referring750
to our running example, Bob’s Personal Online Datastore invokes the addTemporalObligation751
giving as input the ‘Mesoplodon.jpg’ identifier and the integer value that describes the time duration of 20752
days. The onlyOwner modifier ensures that certain functions can only be invoked by using the blockchain753

Frontiers 23

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Table 3. Class diagram of the DTobligations smart contract.

DTobligations
<<extends >> Ownable

dtIndexing: DTindexing
defaultPodObligation: ObligationRules
resourcesObligation: mapping(int=>ObligationRules)
<<modifier>>hasSpecificRules(resourceId: int)
<<modifier>>isValidTemporal(deadline: uint)
<<modifier>>isTheResourceCovered(idResource: int)
public constructor(dtInd: address, podAddress: address)
public getObligationRules(idResource: int): ObligationRules <<isTheResourceCovered>>
public getDefaultObligationRules(): ObligationRules
public addDefaultAccessCounterObligation(accessCounter: uint)
public addDefaultTemporalObligation(temporalObligation: uint) <<isValidTemporal, onlyOwner>>
public addDefaultCountryObligation(country: uint) <<onlyOwner>>
public addDefaultDomainObligation(domain: DomainType) <<onlyOwner>>
public addAccessCounterObligation(idResource: int, accessCounter: uint): ObligationRules <<isTheResourceCovered, onlyOwner>>
public addDomainObligation(idResource: int, domain: DomainType): ObligationRules <<onlyOwner, isTheResourceCovered>>
public addCountryObligation(idResource: int, country: uint): ObligationRules <<onlyOwner, isTheResourceCovered>>
public addTemporalObligation(idResource: int, deadline: uint): ObligationRules <<onlyOwner, isTheResourceCovered, isValidTemporal>>
public removeAccessCounterObligation(idResource: int) <<onlyOwner, isTheResourceCovered, hasSpecificRules>>
public removeTemporalObligation(idResource: int) <<isTheResourceCovered, onlyOwner, hasSpecificRules>>
public removeDomainObligation(idResource: int) <<isTheResourceCovered, onlyOwner, hasSpecificRules>>
public removeCountryObligation(idResource: int) <<isTheResourceCovered, onlyOwner, hasSpecificRules>>
public removeDefaultTemporalObligation() <<onlyOwner>>
public removeDefaultAccessCounterObligation() <<onlyOwner>>
public removeDefaultCountryObligation() <<onlyOwner>>
public removeDefaultDomainObligation() <<onlyOwner>>
public withSpecificRules(idResource: int): bool
public monitorCompliance() <<onlyOwner>>

credentials associated with the smart contract’s owner. It is applied to the functions for rule modification,754
which can be invoked only by the owner Node. In this way, Bob is sure that modification of the rules can755
only be executed by his Personal Online Datastore.756

The main goal of the monitoring procedure is to retrieve evidence from consumer nodes attesting to757
the utilization of resources, whose policies are represented by the DTobligations instance. The smart758
contract implements the monitorCompliance function, solely invocable by the contract owner, to initiate759
the monitoring procedure. When the function is used, it interacts with a pull-in oracle, that is able760
to retrieve external information outside the blockchain. Therefore, the DTobligations smart contract761
communicates with the on-chain component of the oracle (i.e. smart contract named PullInOracle)762
by invoking its initializeMonitoring function. The oracle generates a new MonitoringSession763
struct instance that contains information about the current state of the session and aggregates the external764
responses. The same function emits a NewMonitoring event. The emission of the event is caught by the765
off-chain components of the oracle, running in consumer nodes, that forward to the SGX Intel Trusted766
Application the command to provide the usage log of the resources involved. Once the usage log is767
retrieved, the information contained within it are sent to the on-chain component of the oracle through768
its _callback method. The function aggregates the responses from consumer nodes and updates the769
involved MonitoringSession instance each time it is called. Once all the responses are collected, they770
are returned to the DTobligations smart contract at the end of the process. In our running example, the771
procedure is started by Bob’s Personal Online Datastore using the monitorCompliance function.772
Subsequently, Alice’s SGX Trusted Application is contacted by the pull-in oracle and it is asked to773
provide the usage log of the ‘Mesoplodon.jpg’ resource. Alice’s response contains information such as774
the number of local accesses to the image or the time from its retrieval. The evidence provided by Alice’s775

Frontiers 24

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

SGX Trusted Application is collected, together with pieces of evidence provided by other nodes in the776
network, by the pull-in oracle. Finally, the oracle forwards the logs to Bob’s instance of DTindexing.777

6 EVALUATION

We evaluate the implementation of the ReGov framework by taking two distinct approaches. In the first778
part of this section we revisit the specific requirements usage control requirements that were derived from779
out motivating scenario. While, in the second part, we examine the security, privacy, and affordability of780
our implementation.781

6.1 Requirement Verification782

In this section, we discuss how the previously established requirements are satisfied by our ReGov783
instantiation, following the methodology described in the study of Terry Bahill and Henderson (2005).784
Through the discussion of the requirements, we contextualize the use of the trusted execution environment785
and the blockchain respectively in our architecture. Both requirements are composed of several sub-786
requirements that express various environmental and technological functions.787

6.1.1 (R1) Resource utilization and policy fulfillment must be managed by trusted entities788

The first requirement (R1) stipulates that resource utilization and policy fulfillment must be managed789
by trusted entities. We employ a trusted execution environment in order to develop a trusted application790
executable inside our nodes. We implemented it using Intel SGX, as explained in Section 5.3. Our design791
and implementation choice allows us to satisfy the following sub-requirements:792

(R1.1) The trusted entity must be able to store resources obtained from other entities. In the proposed793
ReGov framework instantiation, all resources retrieved from the data market by the untrusted part of a794
node are passed to the trusted part of a node in order to store them within the enclave. For storage, we795
use an Intel SGX function, called Protected File System Library, which allows the management of files796
containing the resources retrieved within the enclave. We chose to store the data in the enclave because any797
information stored in it is encrypted and decrypted solely by the enclave.798

(R1.2) The trusted entity must support the execution of programmable procedures that enforce799
constraints associated with resource usage. When a resource stored within the enclave is requested,800
before retrieving it, the enclave we have implemented executes all the application procedures provided801
by the resource policy, invoking the necessary enforcement functions. The proposed enclave only allows802
access to the resource if at the end of the execution of all enforcement procedures, all of them have given803
a positive result. Otherwise, the resource is not returned and access is denied. It is worth noting that the804
enforcement mechanism within the trusted application is implemented in a modular way. Although our805
current implementation is limited to four rule types, this feature allows developers to easily extend our806
implementation with additional rule types based on their specific needs.807

(R1.3) Resources and procedures managed by the trusted entity must be protected against malicious808
manipulations. In the proposed ReGov implementation, we store resources within the enclave, because809
it is secure and protected from unauthorized access. The trusted part cannot communicate directly with810
the outside world and thus avoids interacting with malicious software. In addition, all code included and811
executed in the trusted part is, in turn, trusted, as it is not possible to use third-party libraries. The data812
stored within the enclave are encrypted. Therefore, a direct attack on the memory by malicious software813
would not be able to read the data.814

Frontiers 25

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

(R1.4) The trusted entity must be able to prove its trusted nature to other entities in a decentralized815
environment. When it comes to interaction between nodes, in order to prove a node’s trustworthiness, we816
employ the Intel SGX remote attestation within our trusted application. This advanced feature allows a817
node to gain the trust of a remote node. The provided attestation ensures that the node is interacting with a818
trusted application using an updated Intel SGX enclave.819

6.1.2 (R2) Policy compliance must be monitored via the entities of a governance ecosystem820

The second requirement (R2) stipulates that policy compliance must be monitored through entities821
running in a governance ecosystem. In our ReGov framework, we propose the adoption of a governance822
ecosystem that we instantiate on top of blockchain technology. In the following, we show the suitability of823
blockchain for this role by addressing each sub-requirement.824

(R2.1) The governance ecosystem must provide transparency to all the nodes of the decentralized825
environment. By allowing all nodes to view the complete transaction history of the blockchain technology,826
we are able to ensure that each participant of the decentralized environment has equal access to information827
and is able to independently verify the accuracy and integrity of governance data. Additionally, we828
implement the policy management tasks via smart contracts, the code for which is made publicly available829
within the blockchain infrastructure. This enables nodes in the decentralized environment to be aware of830
the governance processes that are being executed.831

(R2.2) Data and metadata maintained by the governance ecosystem must be tamper-resistant. Our832
solution involves the storage of resource metadata and usage policies in data structures that are part of smart833
contracts. Through smart contracts functions, we implement functionality that can be used to upload and834
modify stored data. We leverage the asymmetric key encryption mechanism of the blockchain environment835
to verify that data modifications are performed by authorized users. Once data and metadata of ReGov836
are validated in a blockchain block, we rely on the cryptographic structure underlying the blockchain to837
guarantee the integrity of published smart contracts and the information contained therein.838

(R2.3) The governance ecosystem and the entities that the form part of the ecosystem must be839
aligned with the decentralization principles. We fulfill the decentralization principles by proposing a840
blockchain-based architecture that is inherently decentralized. In our implementation, we publish data and841
metadata through a network of validators rather than a central authority. This ensures that no single entity842
has control over shared data and smart contracts that are distributed in the blockchain ecosystem. Through843
decentralization, we secure the fairness and integrity of policy management and prevent any single authority844
of the decentralized environment from having too much control or disproportionate decision-making power.845

(R2.4) The entities that form part of the governance ecosystem must be able to represent policies and846
verify their observance. The majority of smart contract technologies are characterized by Turing-complete847
programming languages. We use the expressive power of smart contracts to implement data structures that848
can be used to represent usage policies and automate their monitoring. We facilitate the communication849
between smart contracts and off-chain nodes by integrating oracle technologies that implement the protocols850
for data-exchange processes.851

6.2 Architecture Discussion852

In this section, we broaden our discussion on the effectiveness of the proposed decentralized usage control853
architecture with a particular focus on privacy, security, and affordability. The criteria the discussion is854
based on have been inspired by the work of Ferrag and Shu (2021).855

Frontiers 26

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

6.2.1 Security856

Several works already show how the decentralized model makes it more difficult for attackers to857
compromise data, as they would need to gain access to multiple nodes rather than just one central server858
(Raman et al., 2019; Alabdulwahhab, 2018). As per the vast majority of decentralized web initiatives, our859
implementation preserves the security of data residing in nodes through the Personal Online Datastore860
component, which performs authentication and rights evaluation procedures to prevent unauthorized access861
to sensitive information or resources.862

Our solution introduces new components into the decentralized model whose security should be863
discussed. The metadata stored in smart contracts (usage policies and resource indexes) are protected from864
unauthorized updates through the consensus mechanism of the blockchain platform and its distributed865
nature, which makes this information immutable. Moreover, the state of distributed applications running in866
this environment can only be changed by transactions marked by a digital signature. This feature guarantees867
that usage policy modifications can only be executed by authorized entities.868

The Intel SGX Trusted Execution Environment provides a separate ecosystem for the execution869
of a Trusted Application that manages resource utilization. It has already shown its effectiveness in870
terms of preventing the injection of malicious code coming from the operating system of the client’s871
machine (Sabt et al., 2015), which could jeopardize the integrity of the stored resources and the local872
representation of usage policies. Moreover, we also leverage the security guarantees offered by this873
technology to establish a protected environment in which the enforcement of the usage policies is ensured,874
inside the consumer’s node.875

The monitoring process, thanks to which nodes get evidence of the utilization of their resources, involves876
the interaction between the EVM Blockchain and consumer nodes. The procedure involves the exchange877
of confidential information, the integrity of which must be secured. Interactions between the involved878
components are managed via blockchain oracles that are capable of ensuring the legitimacy operations (Al-879
Breiki et al., 2020b). By definition, oracles establish secure communication protocols that enable on-chain880
and off-chain computations to send and receive data safely.881

Security and verification of data consumption are enforced by the ensemble of smart contracts, trusted882
execution environments, and remote attestations. Through the latter, data providers are able to remotely883
verify the integrity of a node’s data consumption component and thwart attempts to instantiate malicious884
consumer nodes in the decentralized environment. Nevertheless, data provision of inappropriate information885
through published data is a practice that requires automated ex-post checking and whistleblowing (Kirrane886
and Di Ciccio, 2020).887

We remark that ReGov cannot supervise users’ actions outside the digital context of the decentralized888
environment. For example, it is unable to prevent users from taking a picture of a protected image resource889
using a separate camera, or copying reserved information displayed on the screen. The framework is890
intended to operate at the digital level. Therefore, ReGov monitors and controls data access, processing,891
and distribution, ensuring that it is utilized in compliance with the associated policy. Our motivating scenario892
resorts to a list of approved applications that guarantee fair data elaboration and facilitate misconduct893
uncovering. Considering the running example, applications like “Socialgram” put in place procedures that894
counteract OS screen recording actions. In addition, unfair activities that break the enforcement mechanism895
can be detected by the presented monitoring routines, enabling data owners to indict malicious users.896

Frontiers 27

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

6.2.2 Privacy897

Privacy is key for decentralized web environments trying to take personal data out of the control of898
single organizations. With usage control, users can benefit from a greater level of privacy, as they have a899
way to determine how their resources are being used. However, enforcement and monitoring mechanisms900
that characterize usage control involve the exchange of data and metadata whose confidentiality should901
constantly be guaranteed.902

One of the most critical issues of our solution regarding confidentiality relates to the blockchain metadata,903
which are publicly exposed in smart contracts. Public blockchains, such as Ethereum, provide public904
ledgers, thus allowing every node of the decentralized environment to get access to usage policy and905
resource locations. Despite the possibility of specifying private variables in smart contracts, the method906
invocations thanks to which those variables are set are recorded in publicly readable transactions. Therefore,907
blockchain users can freely deduce the state of a private variable by inspecting the public transactions908
associated with the invocation of the setter methods. In some use cases, it may be desirable to keep this data909
public. However, there may also be a need to encrypt data stored in the blockchain, so that only authorized910
parties (those that have access to the decryption key) can read this metadata (Pan et al., 2011; Marangone911
et al., 2022).912

The confidentiality of the shared resources must be regulated after their retrieval inside consumer nodes,913
in order to apply the constraints associated with their policy rules. Our implementation leverage the Intel914
SGX Trusted Execution Environment that manages retrieved resources through the SGX Protected915
File System (PFS). One of the key features of SGX-PFS is that it allows for files to be stored in a secure,916
encrypted format, even when the operating system is not running. This makes it difficult for attackers to917
access the resources, as they would need to have physical access to the machine and be able to bypass the918
SGX hardware security features in order to read the contents of the files.919

6.2.3 Affordability920

The affordability of our solution is strongly related to the costs associated with the smart contracts921
running in the blockchain ecosystem. EVM Blockchains associate the execution of smart contracts with922
a fee charged to the invoking user, according to the complexity of the code to be executed. This fee is923
measured in (units of) Gas. In Table 4, we collect the Gas expenses associated with the functions of the924
DTobligations and DTindexing smart contracts. The table omits their read functions, for which no925
transactions need to be sent to the network.926

The deployment cost of DTindexing is 3,255,000 Gas units. The registerPod method is the most927
expensive DTindexing’s function (2,082,494 Gas units) as it involves the deployment of a new contract928
instance, too. The Gas consumption of registerResource turns out to be significantly lower, requiring929
143,004 Gas units. The least expensive function of the smart contract is deactivateResource with an930
expenditure of 21,465 Gas units.931

DTobligations is deployed during the registration of a new personal online datastore at the cost of932
2,057,988 Gas units. DTobligations offers methods and functions to modify the obligation rules related933
to the resources contained in personal online datastore. Among the functions for adding rules, the most934
expensive one is addAccessCounterObligation with a value of 138,768 Gas units. However, the adding935
of a domain restriction through addDefaultDomainObligation costs significantly less with 44,219 Gas936
units per invocation. Methods for rule deactivation determine a lower expense than the previous ones. The937

Frontiers 28

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Table 4. Gas expenditure of the DTobligations and DTindexing smart contracts. Costs are expressed in
Gas units.

DTobligations DTindexing
Function Cost Function Cost
deployment 2,057,988 deployment 3,255,000

addDefaultAccessCounterObligation(· · ·) 62,627 registerPod(· · ·) 2,082,494

addDefaultTemporalObligation(· · ·) 62,638 registerResource(· · ·) 143,004

addDefaultDomainObligation(· · ·) 44,219 deactivateResource(· · ·) 21,465

addDefaultCountryObligation(· · ·) 62,561

addAccessCounterObligation(· · ·) 138,768

addTemporalObligation(· · ·) 97,737

addCountryObligation(· · ·) 97,728

addDomainObligation(· · ·) 79,452

removeDefaultAccessCounterObligation(· · ·) 23,780

removeDefaultTemporalObligation(· · ·) 16,079

removeDefaultDomainObligation(· · ·) 24,747

removeDefaultCountryObligation(· · ·) 23,758

removeAccessCounterObligation(· · ·) 28,184

removeTemporalObligation(· · ·) 28,151

removeCountryObligation(· · ·) 28,173

removeDomainObligation(· · ·) 38,111

monitorCompliance(· · ·) 42,000

cheapest among them is removeDomainObligation (16,079 Gas units). The cost required to initialize a938
monitoring process through the monitorCompliance function is 42,000 units of Gas.939

As expected, operations involving new smart contract deployments are the most expensive ones. However,940
these costs are associated with one-time operations performed at setup time (at the bootstrapping of941
the platform, or every time a new pod is registered). On the other hand, functions intended for more942
frequent invocations (e.g., to monitor compliance or update rules) are characterized by significantly lower943
costs. Costs in fiat money are subject to high variability, as they depend on multiple factors including the944
network capacity utilization, the price in cryptocurrency per Gas unit, and the market exchange rate of the945
cryptocurrency. Also, these values change depending on the EVM blockchain in use (e.g., Ethereum16,946
Avalanche17, Polygon18, and more). At the time of writing, we empirically found variations of four orders947
of magnitude19. However, we remark that our implementation costs align with ERC721 implementations20.948
For example, the deployment fees of the Ethereum Name Service (ENS)21, a non-fungible token in the949

16 https://ethereum.org/. Accessed: Thursday 11th May, 2023.
17 https://www.avax.com/. Accessed: Thursday 11th May, 2023.
18 https://polygon.technology/. Accessed: Thursday 11th May, 2023.
19

The amount of gas needed for the deployment of the DTindexing smart contract, e.g., is 3,255,000. During our experiments, the price per Gas unit
in the Ethereum public network amounted to 36.15 Gwei (one GWei is worth 10−9 ETH). The ETH/EUR exchange rate was 1/1590 EUR. The total
gas cost price was thus 187.09 EUR. Other EVM blockchains exhibited lower Gas prices or exchange rates, decreasing the overall cost in fiat money.
Considering the Avalanche and Polygon platforms, their Gas price was 42.56 and 168.65 Gwei, respectively. The AVAX/EUR exchange rate was
1/15.67, and the MATIC/EUR exchange rate was 1/1.19. As a result, the total expenses amounted to 2.17 and 0.65 EUR, respectively. Data collected:
14 March 2023, 11:30 pm. Our smart contract deployments can be found on the Görli Ethereum test network at https://goerli.etherscan.io/
address/0xb0fe7d07947d9dd7cda47825e61ec14b98ef271a, on the Fuji Avalanche test network at https://testnet.snowtrace.io/address/
0x0082698263ccc5765c97404af39023daefe20096, and on the Mumbai Polygon test network at https://mumbai.polygonscan.com/address/
0x9ee2cb5ef7b1449d615d9fd0f9b167543e0d28eb.
20 https://eips.ethereum.org/EIPS/eip-721. Accessed: Thursday 11th May, 2023.
21 https://etherscan.io/token/0xc18360217d8f7ab5e7c516566761ea12ce7f9d72. Accessed: Thursday 11th May, 2023.

Frontiers 29

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://ethereum.org/
https://www.avax.com/
https://polygon.technology/
https://goerli.etherscan.io/address/0xb0fe7d07947d9dd7cda47825e61ec14b98ef271a
https://goerli.etherscan.io/address/0xb0fe7d07947d9dd7cda47825e61ec14b98ef271a
https://testnet.snowtrace.io/address/0x0082698263ccc5765c97404af39023daefe20096
https://testnet.snowtrace.io/address/0x0082698263ccc5765c97404af39023daefe20096
https://mumbai.polygonscan.com/address/0x9ee2cb5ef7b1449d615d9fd0f9b167543e0d28eb
https://mumbai.polygonscan.com/address/0x9ee2cb5ef7b1449d615d9fd0f9b167543e0d28eb
https://eips.ethereum.org/EIPS/eip-721
https://etherscan.io/token/0xc18360217d8f7ab5e7c516566761ea12ce7f9d72

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

neighboring area of personal information indexing, amounts to 2,443,978 Gas units22. The market scenario950
can support the structural expenses associated with the proposed implementation and provides an incentive951
system that allows users to earn money by sharing their data. However, cost reduction practices are952
necessary to increase usability. These include design improvements to the implementation’s architecture as953
well as the adoption of side-chains and layer-2 networks.954

7 CONCLUSION

Since its inception, the web has evolved from a read-only medium for information dissemination to a955
ubiquitous information and communication platform that supports interaction and collaboration globally.956
Although the web is by design decentralized and thus is not controlled by any single entity or organization,957
the web as we know it today is dominated by a small number of centralized platforms. Consequently, the958
decentralized web initiative aims to promote research into tools and technologies that give data owners959
more control over their data and enable smaller players to gain access to data, thus enabling innovation.960

In this paper, we focus specifically on resource governance in a decentralized web setting. We extend the961
state of the art by proposing a conceptual resource governance framework, entitled ReGov, that facilitates962
usage control in a decentralized setting, with a particular focus on policy respecting resource utilization963
and resource indexing and continuous monitoring. In order to demonstrate the potential of our ReGov964
framework, we propose a concrete instantiation that employs a trusted execution environment to cater for965
the former, and blockchain technologies to facilitate the latter. The effectiveness of the ReGov framework966
and our particular instantiation is assessed via a detailed analysis of concrete requirements derived from a967
data market motivating scenario and an assessment of the security, privacy, and affordability aspects of our968
proposal.969

Future work includes extending our primitive rule syntax to encompass more expressive usage control970
policies that are based on standard policy languages. Additionally, we plan to explore strategies for reducing971
the costs associated with the smart contracts running in the blockchain ecosystem. Studying incentivization972
mechanisms to encourage users to use the platform and possibly gain rewards for sharing information also973
paves the path for future endeavors.974

The community-based categorization of applications interfaced with ReGov is a challenging aspect, the975
solution to which potentially involves the adoption of dedicated smart contracts for voting and arbitrage976
mechanisms. Also, erroneous or malicious misuse of ReGov such as the publication and disclosure of977
otherwise private information is beyond the reach of ReGov and would entail ex-post patrolling of the978
system. Studying these integrations with our framework is a task we envision for future work. Finally, we979
aim to conduct case studies with users to evaluate our approach in real-world settings.980

Acknowledgments.981

The work of D. Basile, C. Di Ciccio, and V. Goretti was partially funded by the Italian Ministry982
of University and Research under grant “Dipartimenti di eccellenza 2018-2022” of the Department of983
Computer Science at Sapienza, by the EU-NGEU NRRP MUR under grant PE00000014 (SERICS), by the984
Cyber 4.0 project BRIE, and by the Sapienza project “Drones as a Service for First Emergency Response”.985
The work of S. Kirrane was funded by the FWF Austrian Science Fund and the Internet Foundation Austria986
under the FWF Elise Richter and netidee SCIENCE programmes as project number V 759-N.987

22 https://etherscan.io/tx/0xff3ee18523c9ec20e62d31d3d3ce3e8bf25f5ffcdfc4c32cd43ed0a786cc8640. Accessed: Thursday 11th May,
2023.

Frontiers 30

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

https://etherscan.io/tx/0xff3ee18523c9ec20e62d31d3d3ce3e8bf25f5ffcdfc4c32cd43ed0a786cc8640

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

REFERENCES

Akaichi, I. and Kirrane, S. (2022a). A semantic policy language for usage control. In SEMANTiCS (Posters988
& Demos) (CEUR-WS.org), 10:1–10:5989

Akaichi, I. and Kirrane, S. (2022b). Usage control specification, enforcement, and robustness: A survey.990
arXiv preprint arXiv:2203.04800991

Al-Breiki, H., Rehman, M. H. U., Salah, K., and Svetinovic, D. (2020a). Trustworthy blockchain oracles:992
Review, comparison, and open research challenges. IEEE Access 8, 85675–85685993

Al-Breiki, H., Rehman, M. H. U., Salah, K., and Svetinovic, D. (2020b). Trustworthy blockchain oracles:994
Review, comparison, and open research challenges. IEEE Access 8, 85675–85685995

Alabdulwahhab, F. A. (2018). Web 3.0: The decentralized web blockchain networks and protocol innovation.996
In 2018 1st International Conference on Computer Applications & Information Security (ICCAIS). 1–4.997
doi:10.1109/CAIS.2018.8441990998

Ayoade, G., Karande, V., Khan, L., and Hamlen, K. (2018). Decentralized IoT data management using999
blockchain and trusted execution environment. In 2018 IEEE International Conference on Information1000
Reuse and Integration (IRI). 15–22. doi:10.1109/IRI.2018.000111001

Bai, G., Yan, L., Gu, L., Guo, Y., and Chen, X. (2014). Context-aware usage control for web of things.1002
Security and Communication Networks 7, 2696–27121003

Basile, D., Goretti, V., Di Ciccio, C., and Kirrane, S. (2021). Enhancing blockchain-based processes with1004
decentralized oracles. In BPM (Blockchain and RPA Forum). 102–1181005

Becker, H., Vu, H., Katzenbach, A., Braun, C. H., and Käfer, T. (2021). Monetising resources on a solid1006
pod using blockchain transactions. In The Semantic Web: ESWC 2021 Satellite Events. 49–531007

Bonatti, P. A., Kirrane, S., Petrova, I. M., and Sauro, L. (2020). Machine understandable policies and1008
GDPR compliance checking. KI-Künstliche Intelligenz 34, 303–3151009

Buterin, V. et al. (2014). A next-generation smart contract and decentralized application platform. white1010
paper 3, 2–11011

Cai, T., Yang, Z., Chen, W., Zheng, Z., and Yu, Y. (2020). A blockchain-assisted trust access authentication1012
system for solid. IEEE Access1013

Carroll, E. L., McGowen, M. R., McCarthy, M. L., Marx, F. G., Aguilar, N., Dalebout, M. L., et al. (2021).1014
Speciation in the deep: genomics and morphology reveal a new species of beaked whale mesoplodon1015
eueu. Proceedings of the Royal Society B 288, 202112131016

Costan, V. and Devadas, S. (2016). Intel sgx explained. Cryptology ePrint Archive1017
Esteves, B. and Rodríguez-Doncel, V. (2022). Analysis of ontologies and policy languages to represent1018

information flows in GDPR. Semantic Web , 1–351019
Ferrag, M. A. and Shu, L. (2021). The performance evaluation of blockchain-based security and privacy1020

systems for the internet of things: A tutorial. IEEE Internet of Things Journal 8, 17236–17260.1021
doi:10.1109/JIOT.2021.30780721022

Grünbacher, A. (2003). POSIX access control lists on linux. In Proceedings of the FREENIX Track: 20031023
USENIX Annual Technical Conference. 259–2721024

Havur, G., Vander Sande, M., and Kirrane, S. (2020). Greater control and transparency in personal data1025
processing. In International Conference on Information Systems Security and Privacy (ICSSP). 655–662.1026
doi:10.5220/00091432065506621027

Hilty, M., Pretschner, A., Basin, D., Schaefer, C., and Walter, T. (2007). A policy language for distributed1028
usage control. In European Symposium on Research in Computer Security (Springer), 531–5461029

Jauernig, P., Sadeghi, A.-R., and Stapf, E. (2020). Trusted execution environments: properties, applications,1030
and challenges. IEEE Security & Privacy 18, 56–601031

Frontiers 31

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Johnson, D., Menezes, A., and Vanstone, S. (2001). The elliptic curve digital signature algorithm (ecdsa).1032
International journal of information security 1, 36–631033

Khan, M. Y., Zuhairi, M. F., Syed, T. A., Alghamdi, T. G., and Marmolejo-Saucedo, J. A. (2020). An1034
extended access control model for permissioned blockchain frameworks. Wirel. Networks 26, 4943–49541035

Kirrane, S. and Di Ciccio, C. (2020). BlockConfess: Towards an architecture for blockchain constraints1036
and forensics. In AIChain@Blockchain (IEEE), 539–544. doi:10.1109/Blockchain50366.2020.000781037

Koshutanski, H. and Massacci, F. (2003). An access control framework for business processes for web1038
services. In Proceedings of the 2003 ACM workshop on XML security. 15–241039

Lazouski, A., Martinelli, F., and Mori, P. (2010). Usage control in computer security: A survey. Computer1040
Science Review 4, 81–991041

Liang, X., Shetty, S., Zhao, J., Bowden, D., Li, D., and Liu, J. (2017). Towards decentralized1042
accountability and self-sovereignty in healthcare systems. In International conference on information1043
and communications security (Springer), 387–3981044

Lind, J., Eyal, I., Kelbert, F., Naor, O., Pietzuch, P., and Sirer, E. G. (2017). Teechain: Scalable blockchain1045
payments using trusted execution environments. arXiv preprint arXiv:1707.054541046

Mammadzada, K., Iqbal, M., Milani, F., García-Bañuelos, L., and Matulevicius, R. (2020). Blockchain1047
oracles: A framework for blockchain-based applications. In BPM (Blockchain and RPA Forum)1048
(Springer), 19–341049

Marangone, E., Di Ciccio, C., and Weber, I. (2022). Fine-grained data access control for collaborative1050
process execution on blockchain. arXiv preprint arXiv:2207.084841051

McGillion, B., Dettenborn, T., Nyman, T., and Asokan, N. (2015). Open-tee–an open virtual trusted1052
execution environment. In 2015 IEEE Trustcom/BigDataSE/ISPA (IEEE), vol. 1, 400–4071053

Mohanty, D. (2018). Ethereum for architects and developers. Apress Media LLC, California , 14–151054

Mühlberger, R., Bachhofner, S., Ferrer, E. C., Di Ciccio, C., Weber, I., Wöhrer, M., et al. (2020).1055
Foundational oracle patterns: Connecting blockchain to the off-chain world. In BPM (Blockchain and1056
RPA Forum) (Springer), 35–511057

Neisse, R., Pretschner, A., and Di Giacomo, V. (2011). A trustworthy usage control enforcement1058
framework. In 2011 Sixth International Conference on Availability, Reliability and Security. 230–235.1059
doi:10.1109/ARES.2011.401060

Ouaddah, A., Abou Elkalam, A., and Ait Ouahman, A. (2016). Fairaccess: a new blockchain-based access1061
control framework for the internet of things. Security and communication networks 9, 5943–59641062

Pan, J., Paul, S., and Jain, R. (2011). A survey of the research on future internet architectures. IEEE1063
Communications Magazine 49, 26–361064

Park, J. and Sandhu, R. (2004). The uconabc usage control model. ACM transactions on information and1065
system security (TISSEC) 7, 128–1741066

Pasdar, A., Lee, Y. C., and Dong, Z. (2022). Connect API with blockchain: A survey on blockchain oracle1067
implementation. ACM Comput. Surv. doi:10.1145/35675821068

Patel, S., Sahoo, A., Mohanta, B. K., Panda, S. S., and Jena, D. (2019). Dauth: A decentralized web1069
authentication system using ethereum based blockchain. In 2019 International Conference on Vision1070
Towards Emerging Trends in Communication and Networking (ViTECoN) (IEEE), 1–51071

Quail, C. and Larabie, C. (2010). Net neutrality: Media discourses and public perception. Global Media1072
Journal 3, 311073

Quintais, J. (2020). The new copyright in the digital single market directive: a critical look. European1074
Intellectual Property Review1075

Frontiers 32

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

Basile et al. Blockchain based Resource Governance for Decentralized Web Environments

Ramachandran, M., Chowdhury, N., Third, A., Domingue, J., Quick, K., and Bachler, M. (2020). Towards1076
complete decentralised verification of data with confidentiality: Different ways to connect solid pods and1077
blockchain. In Companion Proceedings of the Web Conference 2020. 645–6491078

Raman, A., Joglekar, S., Cristofaro, E. D., Sastry, N., and Tyson, G. (2019). Challenges in the decentralised1079
web: The mastodon case. In Proceedings of the Internet Measurement Conference. 217–2291080

Rushby, J. M. (1981). Design and verification of secure systems. ACM SIGOPS Operating Systems Review1081
15, 12–211082

Sabt, M., Achemlal, M., and Bouabdallah, A. (2015). Trusted execution environment: What it is, and what1083
it is not. In 2015 IEEE TrustCom/BigDataSE/ISPA. 57–641084

Sandhu, R. S. and Samarati, P. (1994). Access control: principle and practice. IEEE communications1085
magazine 32, 40–481086

Terry Bahill, A. and Henderson, S. J. (2005). Requirements development, verification, and validation1087
exhibited in famous failures. Systems engineering 8, 1–141088

Toninelli, A., Montanari, R., Kagal, L., and Lassila, O. (2006). A semantic context-aware access control1089
framework for secure collaborations in pervasive computing environments. In International semantic1090
web conference (Springer), 473–4861091

Tran, H., Hitchens, M., Varadharajan, V., and Watters, P. (2005). A trust based access control framework1092
for P2P file-sharing systems. In Proceedings of the 38th Annual Hawaii International Conference on1093
System Sciences (IEEE), 302c–302c1094

Xiao, Y., Zhang, N., Li, J., Lou, W., and Hou, Y. T. (2020). Privacyguard: Enforcing private data usage1095
control with blockchain and attested off-chain contract execution. In Computer Security – ESORICS1096
2020, eds. L. Chen, N. Li, K. Liang, and S. Schneider. 610–6291097

Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A. B., et al. (2016). The blockchain as a1098
software connector. In WICSA (IEEE Computer Society), 182–1911099

Xu, X., Weber, I., and Staples, M. (2019). Architecture for Blockchain Applications (Springer)1100
Zhao, C., Saifuding, D., Tian, H., Zhang, Y., and Xing, C. (2016). On the performance of intel sgx. In1101

2016 13Th web information systems and applications conference (WISA) (IEEE), 184–1871102
Zhaofeng, M., Lingyun, W., Xiaochang, W., Zhen, W., and Weizhe, Z. (2020). Blockchain-enabled1103

decentralized trust management and secure usage control of IoT big data. IEEE Internet of Things1104
Journal 7, 4000–40151105

Zheng, W., Wu, Y., Wu, X., Feng, C., Sui, Y., Luo, X., et al. (2021). A survey of intel sgx and its1106
applications. Frontiers of Computer Science 15, 1–151107

Frontiers 33

Pre-print copy of the manuscript published by Frontiers
identified by doi: 10.3389/fbloc.2023.1141909

This document is a pre-print copy of the manuscript
(Basile et al. 2023)

published by Frontiers.

The final version of the paper is identified by doi: 10.3389/fbloc.2023.1141909

References

Basile, Davide, Claudio Di Ciccio, Valerio Goretti, and Sabrina Kirrane (2023). “Blockchain based
resource governance for decentralized web environments”. In: Frontiers in Blockchain 6, p. 1141909.
issn: 2624-7852. doi: 10.3389/fbloc.2023.1141909.

BibTeX
@Article{ Basile.etal/FBloc2023:BlockchainResourceGovernanceDecentralizedWeb,

author = {Basile, Davide and Di Ciccio, Claudio and Goretti, Valerio
and Kirrane, Sabrina},

journal = {Frontiers in Blockchain},
title = {Blockchain based resource governance for decentralized web

environments},
year = {2023},
issn = {2624-7852},
pages = {1141909},
volume = {6},
doi = {10.3389/fbloc.2023.1141909},
keywords = {Decentralization; Usage control; Governance; Blockchain;

Trusted Execution Environment (TEE)},
publisher = {Frontiers}

}

https://doi.org/10.3389/fbloc.2023.1141909
https://doi.org/10.3389/fbloc.2023.1141909

	Introduction
	Background and Related Work
	Background
	Data Access and Usage Control
	Trusted Execution Environments
	Decentralized Applications and Blockchain Oracles

	Related work

	Motivating scenario and requirements
	Motivating Scenario
	Requirements

	Conceptual Resource Governance Framework
	ReGov Framework Entities
	Components of a Node
	Components of the Governance Ecosystem

	Predominant ReGov Framework Operations
	Data Retrieval
	Monitoring

	Blockchain and Trusted Execution Environment Instantiation
	Usage Policy Instantiation
	Personal Online Data Stores for Data Provision
	Resource Storage
	Web Service

	Trusted Execution Environment for Data Consumption
	Data Protection
	Implementation of the Enforcement Mechanisms

	Blockchain as a Governance Ecosystem
	DTindexing Smart Contract
	DTobligations Smart Contract

	Evaluation
	Requirement Verification
	(R1) Resource utilization and policy fulfillment must be managed by trusted entities
	(R2) Policy compliance must be monitored via the entities of a governance ecosystem

	Architecture Discussion
	Security
	Privacy
	Affordability

	Conclusion

