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Abstract—Process mining analyzes business processes’ behavior
and performance using event logs. An essential requirement is
that events are grouped in cases representing the execution of
process instances. However, logs extracted from different systems
or non-process-aware information systems do not map events
with unique case identifiers (case IDs). In such settings, the event
log needs to be pre-processed to group events into cases – an
operation known as event correlation. Existing techniques for
correlating events work with different assumptions: some assume
the generating processes are acyclic, others require extra domain
knowledge such as the relation between the events and event
attributes, or heuristic information about the activities’ execution
time behavior. However, the domain knowledge is not always
available or easy to acquire, compromising the quality of the
correlated event log. In this paper, we propose a new technique
called EC-SA-RM, which correlates the events using a simulated
annealing technique and iteratively learns the domain knowledge
as a set of association rules. The technique requires a sequence
of timestamped events (i.e., the log without case IDs) and a
process model describing the underlying business process. At
each iteration of the simulated annealing, a possible correlated
log is generated. Then, EC-SA-RM uses this correlated log to
learn a set of association rules that represent the relationship
between the events and the changing behavior over the events’
attributes in an understandable way. These rules enrich the input
and improve the event correlation process for the next iteration.
EC-SA-RM returns an event log in which events are grouped in
cases and a set of association rules that explain the correlation
over the events. We evaluate our approach using four real-life
datasets.

Index Terms—Event correlation, Association rule mining,
Simulated annealing, Explainability

I. INTRODUCTION

Process mining techniques [1] are used to analyze the be-

havior and performance of a variety of processes. A mandatory

input of the techniques is an event log composed of cases,

wherein each case is a sequence of events. As every event

relates with exactly one case, we name this data structure as

correlated log. In practice, though, process data is often stored

by different systems (also non-process-aware ones), thus a

mapping of events to unique cases is not feasible – therefore,

such a correlated event log is not available.
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To address this issue, several approaches for correlating

events were proposed. They work under different assumptions

about the domain, such as acyclicity of the process [2], [3], the

existence of case identifiers among the event attributes [4], [5],

a profiling of the activities’ execution time [6], or additional

data rules about event attributes [7]. The experiments conducted

in [7] highlight that a more detailed domain knowledge (in the

form of accurate data rules) implies a higher quality of the

output correlated event log. However, extra information about

the domain is not always available or easy to acquire.

In this work, we assume that domain knowledge is not

given in advance. Our approach learns rules during the event

correlation process based on partial versions of the correlated

event log. To this end, we build on the event correlation process

presented in [7]. This approach uses simulated annealing to

iterate over the search space and generate a correlated event log.

In our approach, at each iteration of the simulated annealing

we use the current correlated event log to learn data rules

represented as association rules, and evaluate them. The rules

with the highest accuracy are then used as domain knowledge

input in the next iteration – until convergence. We employ the

technique presented in [8] to learn and evaluate the association

rules, which describe the relationship between the events and

the changing behavior over the events’ attributes, i.e., the

way the values of data attributes match or vary depending

on the activities enacted in the sequence. We evaluate our

approach using four real-life datasets. The results show that

our approach is able to learn a correlated event log with

better quality, compared with approaches that use no domain

knowledge or partial domain knowledge. Furthermore, the

extracted association rules provide an explanation for the

event correlation that can help the analyst understand how

the correlated event log was generated.

The remainder of the paper is structured as follows. Section II

describes related work. Section III presents some fundamentals

necessary for the understanding of our approach, which is

described in Section IV. Section V details the evaluation of our

approach. Finally, Section VI concludes our work and presents

future directions for the research.

II. RELATED WORK

Several techniques address the event correlation problem.

The techniques most related to ours are the ones that resort to

some domain knowledge during the correlation process.
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The Deducing Case Ids (DCIc) approach [6] requires a

process model and heuristic information about the activities’

execution duration behavior. DCIc uses a breadth-first approach

to build a case decision tree and explore the solution space in

order to correlate events of an acyclic process. It is sensitive

to the quality of the process model. Also, it is computationally

inefficient due to the breadth-first search approach.

The Event Correlation by Simulated Annealing (EC-SA)

approach [9] uses the event names and timestamp in addition

to the process model. EC-SA addresses the correlation problem

as a multi-level optimization problem, as it searches for the

nearest optimal correlated log considering the fitness with an

input process model and the activities’ time profile within the

log. The accuracy of the given model affects the quality of the

correlated log, and the performance depends on the number of

uncorrelated events. EC-SA-Data, introduced in [7], extends

EC-SA by using the domain knowledge represented as business

constraints over the event data attributes.

Motahari-Nezhad et al. [10] propose a semi-automated

correlation approach to correlate the web service messages

based on correlation conditions. The approach infers the

correlation conditions using the event data from different data

layers. Also, it computes the interestingness of the attributes of

the events to prune the search space. Thus, it generates several

log partitions and possible process views. The approach requires

user-defined domain parameters and intermediate domain expert

feedback to guide the correlation process.

De Murillas et al. [11] provide a way to automatically

generate different event logs from a database by defining the

case notion based on the data relations in the data model. A

case notion specifies the events for the correlation based on

the selected data objects representing the investigated cases.

They measure the interestingness of the generated logs and

recommend the highest one to the user. However, the used log

interestingness metrics do not cover key aspects such as the

homogeneity of behavior captured in the event log.

Abbad Andaloussi et al. [4] assume the existence of a case

identifier within the event attributes. They propose a method

that compares the discovered process models by considering

each event log attribute as a case identifier. Bala et al. [5]

follow a similar direction based on the idea that identifiers are

repetitive in the log.

In summary, these recent techniques make assumptions

about process behavior, available information and size of

search space. The technique presented in this paper learns

knowledge about the association between the control-flow and

data attributes behavior from cases defined in the course of

the correlation process. This way, it relaxes the dependence on

prior assumptions, as it resorts to knowledge uncovered from

the data.

III. PRELIMINARIES

In this section, we discuss the fundamental notions that our

approach builds upon. Section III-A presents the event data

structures. Section III-B reviews the rule mining method we

use in our solution. Section III-C reviews the event correlation

technique, which we integrate at the core of our solution.

A. Process Event Data Structures

Starting with the basic notion of event (i.e., the atomic unit

of execution), we introduce the uncorrelated event log, case

and event log. An event e represents the execution of a process

activity. An event is associated with a set of attributes (A),

which provide information about the recorded activity (Act),
the timestamp marking the date and time of execution (Ts), and

(optionally) additional context information such as resource,

cost, etc. Every attribute Attr ∈ A is mapped to one of the

attribute’s domain values, i.e., an element in the non-empty set

Dom(Attr). We indicate the value mapped by Attr to an event

e by using a dot notation (i.e., e.Attr).

For example, e1 in Fig. 1 is mapped to four different

domain values, one per attribute: e1.Act = A represents the

executed activity, e1.Ts =“07/06/2022 09 : 00” represents the

completion timestamp, e1.Res = Kate represents the operating

resource, and e1.Type = Home represents additional data

knowledge about the event context.

Definition 1 (Uncorrelated log): An uncorrelated event log

(or uncorrelated log for short) UL is a finite set of events

E ∋ e with total order defined over E, ≼ ⊆ E × E.

We assume the mapping of Ts to be coherent with ≼, i.e., if

e ≼ e′ then e.Ts ⩽ e′.Ts. Considering the total ordering as

a mapping from a convex subset of integers, we can assign

to every event a unique integer index (or event id for short),

induced by ≼ on the events. We shall denote the index i ∈
[1, |E|] of an event e as a subscript, ei. For example, Fig. 1(a)

depicts an uncorrelated log and e1 is its first event.

Definition 2 (Case): A case σ = ⟨eσ,1, . . . , eσ,m⟩ is a finite

sequence of length m ∈ N of events eσ,i with 1 ⩽ i ⩽ m
induced by ≼, i.e., such that eσ,i ≼ eσ,k for every i ⩽ k ⩽ m.

We assume every case to be assigned a unique case identifier

(case id for short), namely an integer in a convex subset.

We shall denote the i-th event within a case σ as σ(i). In our

example, the first event in σ1 is denoted as σ1(1), whereby

σ1(1) = e1.

Definition 3 (Correlated Event log): A correlated event log

(or event log for short) L = {σ1, . . . , σn} is a finite non-empty

set of cases, such that if e ∈ σi, then e /∈ σj for all i, j ∈ [1..n],
i ̸= j. We denote its cardinality n ∈ N as |L|.
We shall refer to a case σ that contains an event e in an

event log L with L(e). For example, Fig. 1(d) depicts an event

log that contains 3 cases. Case σ1 defined by case id 1 is

⟨e1, e2, e6⟩. We write L(e6) = σ1. Notice that it preserves the

order of the events within the case.

B. Event Log Rule Miner

The Event Log Rule Miner method [8], henceforth called

EL-RM, discovers association rules between the control-flow

and the data objects within an event log. It is inspired by

the knowledge discovery in database (KDD) process [12] and

proceeds in four main steps, as illustrated in Fig. 2: (i) preparing

the event log, (ii) transforming the event log, (iii) mining the
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EC-SA-RM

A B

C

D

(b) Process model

(c) Data rules

(a) Uncorrelated event log

Case Id Event Id
Activity

(Act)

Timestamp

(Ts)

Resource

(Res)
Type

- 1 A 01/06/2022 09:00 Cristina Car

- 2 B 01/06/2022 09:30 Cristina Car

- 3 A 01/06/2022 10:00 Alessio House

- 4 A 01/06/2022 10:05 Saimir House

- 5 B 01/06/2022 11:00 Alessio House

- 6 C 01/06/2022 12:00 Saimir House

- 7 C 01/06/2022 13:00 Saimir Car

- 8 D 01/06/2022 13:10 Cristina House

Case Id Event Id
Activity

(Act)

Timestamp

(Ts)

Resource

(Res)
Type

1 1 A 01/06/2022 09:00 Cristina Car

1 2 B 01/06/2022 09:30 Cristina Car

2 3 A 01/06/2022 10:00 Alessio House

3 4 A 01/06/2022 10:05 Saimir House

2 5 B 01/06/2022 11:00 Alessio House

1 6 C 01/06/2022 12:00 Saimir House

3 7 C 01/06/2022 13:00 Alessio Car

2 8 D 01/06/2022 13:10 Cristina House

(d) Correlated event log

Figure 1: Running example of a sample loan application check process

Event log

(Preprocessing)

Extending 
the event log 

data

Association 
rules

Processed 

information about 
the rules

(Mining)

Mine 
association 

rules

(Transformation)

Encode event log 
as transcation 

table

ei.Act ej.Act attribute

A B =

B C !=, >, <

(Preprocessing) 
Prepare the 

event log

(Post-processing) 

Analyze the 
rules

Figure 2: The EL-RM method [8]

event log, and (iv) post-processing the discovered association

rules. In the following, we will refer to the latter as data rules

or simply rules for short.

The first step prepares the event log based on the process

analyst’s objectives, such as filtering cases or partitioning the

event log. The second step encodes the pre-processed event

log as a transaction table that sustains the control-flow and

data perspectives. In the third step, the EL-RM is applied on

the transaction table to discover the rules. In the fourth step,

the rules are post-processed based on the process analyst’s

objectives such as ranking them using the interestingness

measures of support, confidence and lift [13], or combining

the rules.

EL-RM extracts rules in the following form (interpreting

∧ as the logical conjunction, <,>,=, ̸= as as comparison

operators over domain values, a, b ∈ Dom(Attr), and i, j as

positive integers):

R := IF RIF THEN RTHEN (1)

RIF := ei.Act = a ∧ ej .Act = b

RTHEN := ei.Attr ≶ ej .Attr
′

≶ := < | > | = | ≠

In the following, we shall name RIF and RTHEN antecedent and

consequent of the rule, respectively.

C. Event correlation with Simulated Annealing

Simulated Annealing (SA) is a meta-heuristic optimization

algorithm that searches the solution space for the nearest

SA parameters

Population size 
(|pop|)

Maximum 

number of steps 

(Smax)

Process 

model

Data

 rules

Uncorrelated 

log

Generate initial 

population (pop)

Create new neighbor           

for each individual        in 

pop 

Compute the energy cost function                        

for       and 

 Alignment 

cost 

Rule 

cost 

Time variance 

cost 
Select an individual  

       for the next 

iteration

Update the global 
solution with the best 
solution up till Scurr  
based on  

Initial temperature   

Cool down           

and increment Scurr 

by 1 

Scurr < Smax

Yes

No

Return the global best 

solution over all the 

iterations

Correlated 

event log

Set current temperature

                        and set 

current step   

Figure 3: The EC-SA-Data technique overview [7]

global solution. It simulates metals’ cooling through the

annealing process [14]: during the earlier iterations, the so-

called temperature is higher and candidate solutions (named

individuals) from wider areas of the search space are picked;

at every iteration, the temperature cools down and the explored

search space shrinks, getting closer to the previous solution.

EC-SA-Data [7] resorts to SA to solve the correlation problem.

Using SA helps find an approximate global optimal correlated

log in a reasonable time.

Figure 3 shows an overview of EC-SA-Data. It requires

three inputs: (1) an uncorrelated log (UL), (2) a process model

(PM), and (3) a set of domain knowledge rules, i.e., data

rules on the event data attributes {R1, . . . , Rm}. It generates

a correlated event log (L) as an output. Next to the input

above, SA (hence EC-SA-Data) allows the user to influence the

annealing process with the following parameters: (1) the initial

temperature (τinit ≥ 1), (2) the maximum number of steps

(Smax ≥ 1), and (3) the number of individuals to generate at

each iteration (namely the population, |pop| ≥ 1). The analysts

can change these parameters based on their experience.

The event correlation problem is treated by EC-SA-Data as
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EC-SA-RM

repeats with every SA iteration (          >1)

EL-RM

Uncorrelated 

events 

EC-SA-Data Intermediate   

event log

Final output

Correlated event 

log

Data rules

Data rules

Process 

model

Data rules

Figure 4: Overview of EC-SA-RM

a multi-level optimization problem with three nested objectives:

(1) minimizing the misalignment between L and PM, (2)

minimizing the violations of rules over cases in L, (3)

minimizing the activity execution time variance across the

cases in L.

EC-SA-Data proceeds through the following steps. First, it

creates the initial population. Then, it initializes the current step

counter (Scurr = 1) and the current temperature with an initial

temperature, τcurr = τinit. Afterwards, the iterative annealing

process begins by generating a neighbor solution x′ that uses the

current individual x. Next, it computes the energy cost function

δfc(x, x
′) between x and x′ based on three energy functions.

The first energy function (fa(x)) computes the cost of aligning

x and PM. The second energy function (fr(x)) computes the

data rules violations cost within x. The third energy function

(ft(x)) computes the activity execution time variance within x.

Then SA computes the acceptance probability prob(x′) using

δfc(x, x
′). prob(x′) is used to determine if the new neighbor,

x′, can be used for the next iteration as a reference individual,

even if it may not perform better than x. Based on this, SA

can increase the chances of skipping the local optimum and

let the algorithm explore the search space further. Finally, SA

uses a cooling schedule that defines the rate at which the

temperature (τcurr) cools down. Finally, it increments Scurr

by 1. SA repeats the annealing and cooling process till Scurr

reaches the maximum number of iterations (Smax).

EC-SA-Data creates an individual x by correlating every

uncorrelated event e ∈ UL. For every e an event correlation

decision is taken based on two stages. First, it replays the

running cases on the process model to filter out the candidate

assignments for e. Then, it uses domain rules to rank the

candidate cases based on the number of satisfied rules by e in

those cases.

Notice that EC-SA-Data is highly sensitive to the process

model and the domain rules. If the domain rules are not

available or incomplete, it compromises the quality of the

generated log.

IV. THE EC-SA-RM SOLUTION

Figure 1 illustrates EC-SA-RM with a running example.

The EC-SA-RM technique requires the following input: (a)

an uncorrelated log (UL), and (b) a process model (PM). It

can also receive a set of data rules as an optional third input

element. As an output, EC-SA-RM generates (c) a correlated

event log (L), and (d) a set of data rules (R) that explain the

event correlation within the log.

The event correlation problem is treated by EC-SA-RM as a

multi-level optimization problem endowed with a learning

capability. EC-SA-RM employs EC-SA-Data to assign the

events with a case (henceforth, correlate events) following

the simulated annealing iterations (see Section III-C). However,

for each iteration, EC-SA-RM uses EL-RM to discover new

data rules using the selected individual x as an intermediate

event log. In the next iteration, the learned data rules are

given as input. From this passage, EC-SA-RM allows SA to

explore the solution space with more information to improve

the next individual x′. Figure 4 depicts a detailed schema of

EC-SA-RM. We describe the steps in detail in the following

subsections.

A. Event Correlation Decision

An event e should be assigned with a correlated case σ in

every individual x. However, each event has multiple candidate

cases. We denote with Pe the set of possible cases for e.

The higher the cardinality of Pe is, the more randomized the

decision on the assignment (henceforth, correlation decision)

gets. We formalize this notion as follows.

Definition 4 (Randomization Factor): Let e ∈ UL be an

uncorrelated event, and Pe ∈ 2L a set of cases that e can

be correlated with. The function Rand : E × 2L → [0, 1]
computes the randomization factor of an event e given the

possible cases Pe as follows:

Rand(e, Pe) = 1−
1

|Pe|
(2)

In the following, we omit the term Pe whenever clear from the

context and denote the randomization factor of an event e with

the dot notation to emphasize its use as a meta-attribute in our

approach. If e.Rand = 0, then e the correlation decision is

made without uncertainty (only one case can be assigned).

To find the candidate cases for each event in the uncorrelated

log, EC-SA-RM filters out the cases in two steps. The first

step prunes the possible cases based on the model. A case

represents a replay of the process model from the start activity

(A in Fig. 2) to one of the end activities (D in Fig. 2). We

name the cases that do not reach the end of the process model

as open cases. There are three scenarios when replaying an

event e over the input process model:

1) Event e corresponds to the execution of the start activity

of the process model (we name it start event). Then,

a new case is open. Notice that the start event has no

randomization factor (e.Rand = 0).

2) Event e corresponds to the execution of an enabled (non-

start) activity for one or more cases in Pe. We call e
an enabled event in this case. If only one case σ ∈ Pe

enables e.Act, it is assigned with σ and thus e.Rand =
0. Otherwise, e is assigned with the case satisfying the

highest number of data rules in the next step.
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Case Id Event Id
Activity

(Act)

Timestamp

(Ts)

Resource

(Res)
Type Rand

1 1 A 01/06/2022 09:00 Cristina Car 0

1 2 B 01/06/2022 09:30 Cristina Car 0

2 3 A 01/06/2022 10:00 Alessio House 0

3 4 A 01/06/2022 10:05 Saimir House 0

2 5 B 01/06/2022 11:00 Alessio House 0.67

1 6 C 01/06/2022 12:00 Saimir House 0.67

2 7 C 01/06/2022 13:00 Saimir Car 0.5

3 8 D 01/06/2022 13:10 Cristina House 0.67

(a) First iteration, individual x1

(b) Discovered rules over x1

(c) Combined rules over x1

Figure 5: Running example, given the UL in Fig. 1(a), PM in

Fig. 1(b) and no initial input rules

3) Event e does not correspond to any enabled activity (non-

enabled event). Then, all the open cases are considered

as possible assignments for the next step.

The second step ranks the possible candidate cases Pe based on

the number of data rules that are satisfied by e in those cases.

When exactly one case achieves the highest number of satisfied

rules, then e.Rand = 0 as there is no randomization factor

in assigning this event based on the given domain knowledge.

Otherwise, the randomization factor is computed based on the

number of highest ranking cases.

For example, let us consider UL in Fig. 1(a) and PM in

Fig. 1(b). In the first iteration, there are no input rules, i.e., R =
∅. The events are correlated based on the model replay only,

as shown in Fig. 5(a). Event e1 is a start event as it executes

the start activity (A). Thus, it opens a new case (σ1) and sets

the randomization factor to zero: e1.Rand = 0. The same goes

for e3 and e4, which start σ2 and σ3, respectively. Then, σ1

is the only open case within the log before e2 and it expects

the execution of activity B. Thus, e2 is assigned to σ1 and

e2.Rand = 0. There are three open cases in the uncorrelated

log before e5: σ1, σ2 and σ3 expect the execution of activity

B. Therefore, e5 is an enabled event and the three cases are

considered as possible candidate cases: Pe5 = {σ1, σ2, σ3}.

Thus, e5 has randomization factor e5.Rand = 0.67. On the

other hand, none of the cases σ1, σ2 and σ3 expect the execution

of activity D. Consequently, e8 is a non-enabled event and

all the three cases are considered as possible candidate cases:

Pe8 = {σ1, σ2, σ3}. Therefore, e8 has randomization factor

e3.Rand = 0.67.

B. Applying EL-RM

EC-SA-RM uses EL-RM to learn new data rules that

can improve the event correlation decision and reduce the

randomization factor over the SA iterations. Figure 2 shows

the steps of the EL-RM method introduced in Section III-B.

First, we have a pre-processing step in which EC-SA-RM

uses the selected individual x as an intermediate correlated

log. It filters cases that contain at least two events (i.e., at

least one more than the start event with a randomization factor

equal to zero) and selects only these events to represent the

case in the analysis. For example, let us consider the event log

L in Fig. 5(a). Within the pre-processing step, we filter out

only two events, namely e1 and e2, because they belong to the

same case (σ1) and e1.Rand = e2.Rand = 0. However, notice

that during the first iterations there may be no events with a

randomization factor equal to zero but the initial ones. In case,

we take into account the events with the lowest randomization

factor.

The second step is the encoding of the selected cases

as a transaction table, namely the data structure to be fed

into EL-RM. The passage is necessary for third step to take

place, as it is the association rule discovery by EL-RM. The

fourth step is the post-processing step, wherein EC-SA-RM

operates as follows. First, it ranks the discovered rules based

on their confidence and lift [8]. Second, it filters out the rules

with confidence equal to one to avoid that the subsequent

iterations are prone to overfitting – such rules would naturally

tend to restrict the exploration range closer to the previous

individuals in the search space. Following the encoding and

the mining steps, for example, we get the two rules depicted

in Fig. 5(b). Third, it merges the filtered rules into new ones

as the computation time for their checking is expensive and

affected by the overall number of rules at hand. EC-SA-RM

combines all the sets of rules that share the same antecedent

(i.e., in the IF part) into new ones. For each of these new

rules, the antecedent is the common one, and the consequent is

the conjunction of the combined rules (i.e., in the THEN part).

We formally define the rule that stems from this combination

as follows.

Definition 5 (Combined rule): Let R ∋ R be a set

of data rules expressed as in Eq. (1). Let ∼IF∈ R × R

be the equivalence relation that includes in an equivalence

class [R]IF the rules that have the same antecedent as R:

∼IF≜ {(R,R′) : RIF ≡ R′
IF
}. Given an equivalence class

[R]IF combined rule R̃ is expressed as follows:

R̃ ≜ IF RIF THEN

∧

R′∈[R]IF

R′
THEN

(3)

Notice that the conjunction of all rules in an equivalence class

[R]IF is logically equivalent to its combined rule R̃. Therefore,

our approach replaces the set of discovered data rules with the

set of combined rules stemming from each equivalence class.

The two rules in Fig. 5(b), e.g., are combined into the one in

Fig. 5(c).

C. Including New Data Rules for SA Iterations

After learning new data rules, EC-SA-RM includes them

in the set coming from the previous iteration (or given as an

initial input, if any, at the beginning). EC-SA-RM uses the

rules to guide the generation of the new neighbor individual

x′ and improve the event correlation decision step by reducing

the randomization factor over the events.

For example, the data rules in Fig. 5(c) are used to generate

a new individual x′. As illustrated in Section IV-B, Pe5 =
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Figure 6: Evaluation steps

{σ1, σ2, σ3}. The three cases are then ranked based on the

number of satisfied data rules. Case σ2 satisfies the combined

rule, whereas σ1 and σ3 do not and are therefore ranked as

the last. Thus, e5 is assigned to σ2 and it has a randomization

factor of zero (e5.Rand = 0).

As shown in Fig. 4, EC-SA-RM proceeds until EC-SA-Data

reaches the maximum number of iterations of the annealing

process. Each iteration discovers new data rules using the

previous iteration’s selected individual and reassigns the events

based on the given model and the new set of rules to explore

the search space. We recall that accepting a worse solution

than the previous one in some iterations is part of the rationale

as it helps to skip the optimal local solution, with the aim to

reach an approximate optimal global solution.

V. EVALUATION

We implemented a prototype tool for EC-SA-RM.1 Using

this tool, we conducted three experiments to evaluate the

accuracy of our approach, and compared the results with

EC-SA [9] and EC-SA-Data [7] as a baseline.

A. Design

Figure 6 depicts our evaluation process. The primary input

for the three experiments is a correlated event log. We refer to

it as the original log. Using this log, we created an uncorrelated

log by removing the case identifiers from it. Then, we mined the

process models from the original logs using Split Miner [15].

We used four real-world datasets from the benchmark of

Augusto et al. [16] based on the publicly available event logs in

the BPIC repository. Table I shows some descriptive statistics

about them.

We conducted three experiments, aimed at assessing the

accuracy improvement our approach yields. The first experi-

ment simulates the real-life scenario wherein the analyst has no

prior knowledge about the data rules. We compare the results

acquired with our approach with those of EC-SA, as the latter

does not correlate the events based on the data rules knowledge.

The second experiment mimics the common situation in which

the analyst has some prior knowledge about the data rules. To

this end, we extracted the data rules by visual inspection and

analysis of those event logs. We compare the results acquired

with our approach with those of EC-SA-Data, as the latter can

use data rules to guide the correlation of the events. The third

experiment performs a sensitivity analysis that investigates the

effect of the initial set of data rules on the accuracy of our

1https://github.com/DinaBayomie/EC-SA-RM/releases/tag/EC-SA-RM-V1

Table I: Descriptive statistics of real logs

Traces Events Trace length

Event log Total Dst.% Total Dst.% Min Avg Max

BPIC13cp [18] 1487 12.3 6660 7 1 4 35
BPIC13inc [19] 7554 20.0 65 533 13 1 9 123
BPIC151f [20] 902 32.7 21 656 70 5 24 50
BPIC17f [17] 21 861 40.1 714 198 41 11 33 113

approach. We used the BPIC17 event log [17]. We examine the

impact of increasing the number of input rules on the accuracy

of the generated log. To this end, we gradually increment the

number of used constraints from zero to ten and compare the

results with those of EC-SA-Data.

B. Accuracy metrics

To assess accuracy, we gauge the similarity between the

original (correlated) log and the log generated by our technique

using the four measures introduced in [7]. The first two

measures focus on the structural similarity between generated

and original logs. The other two measures take the temporal

distance into account – namely, that of events’ elapsed times,

and cases’ cycle times.

The first measure is the bigram similarity [7], which assesses

the extent to which a generated log L′ captures the event pair

relationships in the original log L. It is based on the number of

the pair of events (henceforth, bigrams, i.e., n-grams of length

2) that occur in both logs. We formally define it as follows.

Definition 6 (Bigram similarity): Let L and L′ be two event

logs. We denote with occurs2 (⟨e, e′⟩, L) the indicator function

that returns 1 if there exists a case σ ∈ L such that ⟨e, e′⟩ is a

segment of it:

occurs2(⟨e, e′⟩ , L) =

{

1 if there exists σ ∈ L s.t. ⟨e, e′⟩ ⊆ σ

0 otherwise
(4)

The bigram similarity L2L2gram is computed dividing by the

cardinality of L the average number of bigrams in the cases

of L that also occur in L′ as follows:

L2L2gram(L,L
′) = 1

|L|

∑

σ∈L

1
|σ|−1

(

|σ|−1
∑

i=1

occurs2 (⟨σ(i), σ(i+ 1)⟩, L′)

)

(5)

The second measure is the case similarity [7], which

considers how many cases consist of identically correlated

events in the original and correlated event logs.

Definition 7 (Case similarity, L2Lcase): Given two event

logs L and L′, the case similarity, L2Lcase, is the number of

cases that are equal in L and L′ divided by the total number

of cases.

L2Lcase(L,L
′) =

|L ∩ L′|

|L|
(6)

The third measure is the event time deviation [7], which

considers in how far the generated log deviates in terms of

the elapsed time of events from the original log. We formally

define it as follows.

Definition 8 (Event time deviation): Let L and L′ be event

logs defined over a common universe of events E. Let ET(σ, e)
be the elapsed time (ET), i.e., the execution duration of an
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Figure 7: Exp. 1: Impact of learning domain knowledge with

no prior data rules

event e in case σ, computed as follows:

ET(σ, e(σ,i)) =

{

e(σ,i).Ts− e(σ,i−1).Ts if 1 < i ⩽ n

0 otherwise

(7)

The event time deviation, SMAPEET, is the Symmetric Mean

Absolute Percentage Error (SMAPE) of the elapsed time of

events between L and L′:

SMAPEET(L,L
′) =

∑

e∈E

|ET(σ,e)−ET(σ′,e)|
|ET(σ,e)|+|ET(σ′,e)|

|E| − |L|

with σ = L(e), σ′ = L′(e) (8)
The fourth measure is the case cycle time deviation [7],

which investigates the deviation of the generated log from the

original one in terms of the cases’ cycle time. To compare

pairs of cases, we consider those that have the same start event.

We formally define the measure as follows.

Definition 9 (Case cycle time deviation): Let CT(σ) be the

cycle time of a case σ, computed as follows [21], [22]:

CT(σ) = σ(|σ|).T s− σ(1).T s (9)

Given two event logs L and L′, the case cycle time deviation

SMAPECT is the symmetric mean absolute percentage error

of the cycle time between cases in L and L′:

SMAPECT(L,L
′) = 1

|L| ×
∑

σ∈L,

σ′inL′:
σ(1)=σ′(1)

|CT(σ)−CT(σ′)|
|CT(σ)|+|CT(σ′)|

(10)

Notice that SMAPEET and SMAPECT are error measures,

so low values reflect a higher quality of the results.

C. Results

Figure 7 depicts the results of the first experiment. Its aim

is analyzing the impact of learning new data rules (with no

prior ones as input) on the correlation accuracy. To this end,

results are compared with the EC-SA, which, in contrast,

does not consider any domain knowledge in addition to

the process model for the correlation decision. We can see

that learning the data rules and using them for the event

correlation decision improves the accuracy. Indeed, EC-SA-RM

outperforms EC-SA. Figures 7(a) and 7(b) show that L2L2gram
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Figure 8: Exp. 2: Impact of learning domain knowledge with

prior data rules

and L2Lcase exhibit an increment of around 14% and 20%
on average, respectively. Notably, discovering the data rules

over the iterations in EC-SA-RM dramatically improves the

correlation quality over the BPIC17 and BPIC15 logs as it

can be observed in Fig. 7(b) – notice that L2Lcase increase by

24% and 23%, respectively. Figures 7(c) and 7(d) highlight

that also the time deviation decreases when rules are in use,

as SMAPEET and SMAPECT go down by 13% and 19%.

Notice that learning and using new data rules over sub-

sequent SA iterations enhances the correlation process by

decreasing the randomization factor of event-case assign-

ments, as it prunes the violated candidate cases. Furthermore,

EC-SA-RM builds the data rules that describe the generated

event log and justify the event assignment decision. For

instance, one of the rules returned by EC-SA-RM for BPIC17

explains the correlation in 14% of the events: IF σ(i).Act =
‘O Sent (mail and online)’ ∧ σ(j).Act = ‘O Created’ THEN

σ(i).OfferID = σ(j).OfferID ∧ σ(i).Type = σ(j).Type.

Figure 8 illustrates the results of the second experiment,

which studies the impact of learning new data rules with

prior data rules given as input, and compares the results with

EC-SA-Data. We can see that learning new data rules over the

iterations improves the accuracy. Figures 8(a) and 8(b) show

that L2L2gram and L2Lcase increase by around 7% and 5%
on average, respectively. Notably, discovering the data rules

over the iterations in EC-SA-RM dramatically improves the

correlation quality over the BPIC15 log, as L2Lcase improves

by 10% as depicted in Fig. 8(b). Figures 8(c) and 8(d) put in

evidence that also the time deviation decreases, as SMAPEET

and SMAPECT decrease by 5% and 4%, respectively.

The usage of rule mining in EC-SA-RM affects execution

time performance. The reason is, every iteration awaits for

the discovery of the new data rules. As a result, the overall

computation time is higher than EC-SA-Data. For instance,

EC-SA-RM ran for 20 h to complete the execution with

the BPIC17, whereas EC-SA-Data took 13.7 h to complete.

The processing of the BPIC151f log required 12 h, whilst

EC-SA-Data needed 6.5 h. We remark that the final set of

data rules learned by EC-SA-RM is expected to be different

from the final set of rules learned over the original log by
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Figure 9: Exp. 3: Sensitivity analysis on the impact of prior

data rules on accuracy

EL-RM, given that we still cannot reach a case similarity

(L2Lcase) of 100%.

Figure 9 depicts the results of the third experiment, which

studies the effect of the number of input data rules on the

accuracy of the correlation process, and compares the results

with EC-SA-Data. We can see that having an initial set of data

rules is beneficial to the discovery phase as they offer a better

guidance. Indeed, the technique convergences faster towards

the result and the accuracy of the generated log increases.

Figure 9(a) shows that L2L2gram and L2Lcase increase by

around 13% and 27% on average, respectively. Furthermore,

EC-SA-RM outperfoms EC-SA-Data by around 8% and 20%
on average, respectively. Figure 9(b) highlights that also the

time deviation decreases when constraints are in use, as

SMAPEET and SMAPECT decrease by around 27% and

36% on average, respectively. Also, EC-SA-RM outperfoms

EC-SA-Data by around 8% and 10% on average, respectively.

D. Discussion

Our experiments show that learning and using data rules

improves correlation accuracy due to a reduction of the

randomization factor for event-case assignment. Our approach

is sensitive to the accuracy of the given input, as the process

model and the initial set of data rules influence the event

correlation decision. However, discovering new rules over every

iteration may balance the negative impact of an inaccurate input.

EC-SA-RM, thus, is flexible concerning the prior knowledge of

the analyst. The learned data rules let EC-SA-RM improve the

accuracy of the generated log, as evidenced by all experiments

(the first one having no rules provided as input, and the other

two resorting to partial prior knowledge). Last but not least,

they provide an explanation for the correlation decisions, which

can support the process analyst for further analyses.

VI. CONCLUSION

We presented EC-SA-RM, a technique for the automated

correlation of events. Our approach learns data rules to integrate

domain knowledge discovered at run time with the given input

and thereby drive the correlation decisions. A key quality that

EC-SA-RM enjoys is thus its flexibility concerning the prior

knowledge of the analyst, on which other techniques heavily

rely instead. Our findings show that EC-SA-RM is able to learn

a more accurate event log when compared with state-of-the-art

algorithms. In addition, the returned data rules can be used

as a means to illustrate the rationale behind the assignment

of cases to events, thereby equipping our technique with an

additional explainability lens.

As future work, we want to include measures dedicated to the

direct evaluation of the impact of the rules over the iterations.

Also, we plan to use these measures to justify the correlation

decisions and therefore provide more accurate explanation for

the process analysts. Moreover, we aim to deepen the combined

data analysis from multiple process perspectives and modeling

paradigms at once [23], [24].
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