
Measurement of Rule-based
LTLf Declarative Process Specifications

Alessio Cecconi
WU Vienna, Austria

alessio.cecconi@wu.ac.at

Claudio Di Ciccio
Sapienza University of Rome, Italy

claudio.diciccio@uniroma1.it

Arik Senderovich
York University, Toronto, Canada

sariks@yorku.ca

Abstract—The classical checking of declarative Linear Temporal
Logic on Finite Traces (LTLf) specifications verifies whether
conjunctions of sets of formulae are satisfied by collections of
finite traces. The data on which the verification is conducted
may be corrupted by a number of logging errors or execution
deviations at the level of single elements within a trace. The ability
to quantitatively assess the extent to which traces satisfy a process
specification (and not only if they do so or not at all) is thus
key, especially in process mining scenarios. Previous techniques
proposed for this aim either require formulae to be extended
with quantitative operators or cater to the coarse granularity of
whole traces. In this paper, we propose a framework to devise
probabilistic measures for declarative process specifications on
traces at the level of events, inspired by association rule mining.
Thereupon, we describe a technique that measures the degree of
satisfaction of these specifications over bags of traces. To assess
our approach, we conduct an evaluation with real-world data.

Index Terms—Linear temporal logic, declarative process mining,
specification mining, probabilistic modeling, statistical estimation

I. INTRODUCTION

The declarative specification of a process allows users and
designers to norm and control its behavior through rules. These
rules consist of temporal logic formulae (such as LTLf) that
are verified against recorded runs of the process-aware systems
in an event log, to check their compliance with the behavioral
properties it must guarantee. This automated checking task
shows wide adoption in multiple areas of computer science,
including process mining [1], [2], planning [3], [4], and
software engineering [5], [6].

Despite the increasing interest in this challenge, we observe
that a fundamental problem remains unaddressed. Measuring
the extent to which traces adhere to the admissible behavior in
terms of specifications, or sets of rules, is still a problem
that leaves ample margins for investigation. Consider, for
example, a declarative process specification S consisting of
two rules, Ψ1 and Ψ2. Ψ1 translates to “Whenever antibiotics
are administered, they should be preceded by the registration
of an antibiogram”. Ψ2 indicates that “If a viral infection is
detected, an intravenous antiviral administration will follow”.
Confidence is the proportion of events in a log that satisfy
the consequent (target, i.e., the preceding registration of an
antibiogram in Ψ1) given the satisfaction of the antecedent

The work of C. Di Ciccio was supported by the MUR under the PRIN
programme, grant B87G22000450001 (PINPOINT), the “Dipartimenti di
eccellenza 2018-2022” grant, and by the DRONES and SPECTRA Sapienza
research projects.

(activator, i.e., the detection of a viral infection in Ψ2). Suppose
the confidence of Ψ1 and Ψ2 are 100% and 50%, respectively.
What is the confidence of S “ tΨ1,Ψ2u? Considering the
confidence of a single formula consisting of the conjunction of
all rules (e.g., Ψ1^Ψ2) may be too coarse grained: violating a
single rule or violating them all would lead to the same result.
Likewise, aggregating measures over the single rules (as in [7])
may be misleading: if the activator of Ψ1 occurs 100 times in
the log, whilst the activator of Ψ2 occurs twice, there is one
violation out of the overall 102 occurrences of the activators.
Nevertheless, the average confidence amounts to 75%.

To overcome this issue, we adapt and extend the concept of
Reactive Constraint (RCon), originally proposed in [8], and the
measurement framework for single declarative rules expressed
as RCons [7]. RCons are rules expressed in an if–then fashion
(like Ψ1 and Ψ2), namely a pair of LTLf formulae: activator
and target. RCons cover the full spectrum of declarative
process specification languages such as DECLARE [1] as any
LTLf formula can be translated into an RCon [8]. Equipped
with this notion, we propose a measurement framework that
takes inspiration from classical association rule mining [9]
to assess whether, and in how far, process specifications
consisting of LTLf -based rules expressed in such an “if–
then” fashion are satisfied by a trace, rooted in probability
theory and statistical inference. Specifically, in order to provide
a non-binary interpretation for specification measurements,
we model events of satisfaction and violation of formulae
by traces (and logs of traces) using probability theory, and
derive corresponding maximum-likelihood estimators for these
probabilistic models. Moreover, we show that these estimators
can be computed in polynomial time.

To the best of our knowledge, this work is the first to tackle
and solve the problem of devising well-defined measures for
entire declarative specifications consisting of multiple rules.
To tackle this non-trivial problem, we move from an ad-
hoc counting approach to sound probabilistic theory based
on maximum likelihood estimation. Finally, we conduct an
evaluation on real-world data of our approach with its software
prototype implementation.

In the remainder of this paper, Sec.s II and III formalize
the background notions our work is based upon: LTLf and
its interpretation on event logs, and RCons. Sec. IV lays the
foundations of our probabilistic theory, upon which the evalua-
tion and measurement of declarative process specifications are
based upon as described in Sec. V. We report on the evaluation

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org)
identified by doi: 10.1109/ICPM57379.2022.9980690

of our implemented prototype on real-world data in Sec. VI.
Sec. VII analyzes the research in the literature that relates to
our investigation. Finally, Sec. VIII concludes the paper with
remarks on future work.

II. EVENT LOGS AND LINEAR TEMPORAL LOGIC ON FINITE
TRACES (LTLf)

In this paper, we are interested in the checking of speci-
fications against collections of traces reporting on multiple
executions of the process. As runs can recur, we formalize
such structure as a multi-set of traces, namely an event log.

Definition 2.1 (Log): Given a finite alphabet of propositional
symbols Σ, we name as event an assignment for the symbols
in Σ and as trace a finite sequence of events. An event log (or
log for short) is a finite multi-set of traces L “ ttj11 , . . . , tjmm u
of cardinality |L| “

řm
i“1 ji.

For example, Table I presents a log L “ tt171 , t62, t
5
3, t

12
4 , t55u

defined over alphabet Σ “ ta, b, c, d, eu. Its cardinality is 45.

Linear Temporal Logic on Finite Traces (LTLf) [10]
expresses propositions over linear discrete-time structures of
finite length – namely, traces as per Def. 2.1. It shares its
syntax with Linear Temporal Logic (LTL) [11] and is at the
basis of declarative process specification languages such as
DECLARE [12]. In this paper, we endow LTLf with past
modalities as in [13].

Definition 2.2 (Syntax of LTLf): Well-formed Linear Tempo-
ral Logic on Finite Traces (LTLf) formulae are built from an
alphabet Σ Ě tau of propositional symbols, auxiliary symbols
p and q, propositional constants True and False, the unary
temporal operators l (next) and a (yesterday), and the binary
temporal operators U (until) and S (since) as follows:

φ ::“True|False|a|p␣φq|pφ1 ^ φ2q|

plφq|pφ1 U φ2q|paφq|pφ1 S φ2q.

We may omit parentheses when the operator precedence
intuitively follows from the expression. Given te, du Ď Σ,
e.g., the following is an LTLf formula: pl␣eq U d.

Semantics of LTLf is given in terms of finite traces, i.e.,
finite words over the alphabet 2Σ. We name the index of the
element in the trace as instant. Intuitively, lφ and aφ indicate
that φ holds in the next and previous instant, respectively;
φ1 U φ2 states that φ2 will eventually hold and, until then,
φ1 holds too; dually, φ1 S φ2 signifies that φ2 holds at some
point and, from that instant on, φ1 holds too. We formalize
the above as follows.

Definition 2.3 (Semantics of LTLf): Given a finite trace t
of length n P N, an LTLf formula φ is satisfied at a given
instant i (1 ď i ď n) by induction of the following:
pt, iq |ù True; pt, iq * False;
pt, iq |ù a iff a is True in tpiq;
pt, iq |ù ␣φ iff pt, iq * φ;
pt, iq |ù φ1 ^ φ2 iff pt, iq |ù φ1 and pt, iq |ù φ2;
pt, iq |ù lφ iff i ă n and pt, i` 1q |ù φ;
pt, iq |ù aφ iff i ą 1 and pt, i´ 1q |ù φ;
pt, iq |ù φ1 U φ2 iff pt, jq |ù φ2 with i ď j ď n, and pt, kq |ù φ1

for all k s.t. i ď k ă j;
pt, iq |ù φ1 S φ2 iff pt, jq |ù φ2 with 1 ď j ď i, and pt, kq |ù φ1

for all k s.t. j ă k ď i.

Without loss of generality, we consider here the non-strict
semantics of U and S [14]. Also, notice that each
event in Table I satisfies only one proposition (thus applying
the “Declare assumption” [15]) for the sake of simplicity. In
the following, we might directly refer to the sequence of
events xe1, . . . , eny of a trace t of length n to indicate the
sequence of assignments at instants 1, . . . , n. For example,
t1, t2, and t4 in Table I are written as xa, b, c, d, b, c, e, c, by,
xb, d, a, b, b, d, e, d, cy, and xb, c, a, c, e, ay, respectively. We
thereby indicate, e.g., that pt1, 1q |ù a, pt2, 4q |ù b, and
pt4, 2q |ù c. Considering again the formula pl␣eq U d, we
have that pt1, 1q satisfies it, whereas pt2, 6q does not.

From the above operators, the following can be derived:
‚ Classical boolean abbreviations _,Ñ;
‚ Constant tEnd ” ␣l True, the last instant of a trace;
‚ Constant tStart ” ␣a True, the first instant of a trace;
‚ ♢φ ” True U φ, indicating that φ holds true in a

following instant before tEnd (eventually);
‚ φ1 W φ2 ” pφ1 U φ2q _ lφ1, which relaxes U as
φ2 may never hold true (weak until);

‚ ♢φ ” True S φ, indicating that φ holds true in a
preceding instant after tStart (once);

‚ lφ ” ␣♢␣φ, indicating that φ holds true from the
current instant till tEnd (always);

‚ aφ ” ␣♢␣φ, indicating that φ holds true from tStart to
the current instant (historically).

For example, d^♢e is satisfied in a trace when the propositional
atom d holds and e holds at a later instant in the same trace.
Considering the log in Table I, we have that pt2, 6q |ù d^ ♢e
whereas pt1, 1q * d^ ♢e.

Let }φ} denote the size of the LTLf formula φ in terms of
propositional symbols and connectives excluding parentheses.
For example, }pl␣eq U d} is 5 and }d^ ♢e} is 4.

Theorem 2.1 ([16]): Let t be a finite trace of length n P N.
Checking whether pt, iq |ù φ (with 1 ď i ď n) satisfies an
LTLf formula φ is feasible in Opn2 ˆ }φ}q.

Proof: It follows from the proof in [16] elaborated for
future operators (l, ♢, l, and U). Notice that the use of past
modalities a, a, ♢ and S do not alter the complexity. Indeed,
they can be included in the parse tree of the constructive proof
in [16] as the respective future counterparts and checked against
the trace read in reverse (i.e., from end to start [8]).

Corollary 2.1: Let L be an event log as per Def. 2.1
consisting of m traces of length up to n P N and cardinality
|L| ě m. Labeling the events in L that satisfy an LTLf formula
φ is feasible in Opn3 ˆ }φ} ˆmq.

Proof: The proof follows from Thm. 2.1 as the checking
is done for the Opnq events of all m distinct traces in L.

III. RULES AS REACTIVE CONSTRAINTS (RCONS)

Intuitively, Reactive Constraints (RCons) express LTLf -
based rules as antecedent-consequent pairs in an “if-then”
fashion. Next, we formalize their definition.

Definition 3.1 (Reactive Constraint (RCon)): Given an
alphabet of propositional symbols Σ, let φα and φτ be LTLf

formulae over Σ. A Reactive Constraint (RCon) Ψ is a pair

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org)
identified by doi: 10.1109/ICPM57379.2022.9980690

Table I: Measurements of RCons Ψ1 “ c ♢a, and Ψ2 “ d ♢e, and of specification S “ tΨ1,Ψ2u on a log

Log Evaluation RCon
/ Specification

P of RCon
/ P of S P of act. P of target Support Confidence Recall Specificity Lift

t1 “ xa, b, c, d, b, c, e, c, by
xx, x, 1, x, x, 1, x, 1, xy
xx, x, x, 1, x, x, x, x, xy
xx, x, 1, 1, x, 1, x, 1, xy

Ψ1 “ c ♢a
Ψ2 “ d ♢e
S “ tΨ1,Ψ2u

1.00
1.00
1.00

0.33
0.11
0.44

1.00
0.78
0.89

0.33
0.11
0.44

1.00
1.00
1.00

0.33
0.14
0.50

0.00
0.25
0.20

1.00
1.29
1.13

t2 “ xb, d, a, b, b, d, e, d, cy
xx, x, x, x, x, x, x, x, 1y
xx, 1, x, x, x, 1, x, 0, xy
xx, 1, x, x, x, 1, x, 0, 1y

Ψ1 “ c ♢a
Ψ2 “ d ♢e
S “ tΨ1,Ψ2u

1.00
0.67
0.75

0.11
0.33
0.44

0.78
0.78
0.78

0.11
0.22
0.33

1.00
0.67
0.75

0.14
0.29
0.43

0.25
0.17
0.20

1.29
0.86
0.96

t3 “ xc, d, a, b, c, e, b, c, b, cy
x0, x, x, x, 1, x, x, 1, x, 1y
xx, 1, x, x, x, x, x, x, x, xy
x0, 1, x, x, 1, x, x, 1, x, 1y

Ψ1 “ c ♢a
Ψ2 “ d ♢e
S “ tΨ1,Ψ2u

0.75
1.00
0.80

0.40
0.10
0.50

0.80
0.60
0.70

0.30
0.10
0.40

0.75
1.00
0.80

0.38
0.17
0.57

0.17
0.44
0.40

0.94
1.67
1.14

t4 “ xb, c, a, c, e, ay
xx, 0, x, 1, x, xy
xx, x, x, x, x, xy
xx, 0, x, 1, x, xy

Ψ1 “ c ♢a
Ψ2 “ d ♢e
S “ tΨ1,Ψ2u

0.50
NaN
0.50

0.33
0.00
0.33

0.67
0.83
0.50

0.17
0.00
0.17

0.50
NaN
0.50

0.25
0.00
0.33

0.25
0.17
0.50

0.75
NaN
1.00

t5 “ xb, b, by
xx, x, xy
xx, x, xy
xx, x, xy

Ψ1 “ c ♢a
Ψ2 “ d ♢e
S “ tΨ1,Ψ2u

NaN
NaN
NaN

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

NaN
NaN
NaN

NaN
NaN
NaN

1.00
1.00
1.00

NaN
NaN
NaN

L “ tt171 , t62, t
5
3, t

12
4 , t55u

|L| “ 45

Ψ1 “ c ♢a
Ψ2 “ d ♢e
S “ tΨ1,Ψ2u

0.73
0.58
0.70

0.89
0.62
0.89

0.73
0.80
0.70

0.73
0.58
0.70

0.82
0.93
0.79

1.00
0.72
1.00

1.00
0.41
1.00

1.13
1.16
1.13

NaN values denote a division by 0.

pφα, φτ q hereafter denoted as Ψ fi φα φτ . We name φα

as activator and φτ as target.
We define the semantics of an RCon Ψ “ φα φτ as

follows: given a trace t of length n and instant i with 1 ď i ď n,
we say that Ψ is satisfied by t in i, i.e., t, i |ù Ψ, iff t, i |ù φα

and t, i |ù φτ Ψ is violated by t in i, t, i * Ψ, iff t, i |ù φα

and t, i * φτ Ψ is unaffected by t in i, iff t, i * φα. We
also say that Ψ is activated by t if there exists an instant i
s.t. 1 ď i ď n and t, i |ù φα. For example, Ψ1 “ c ♢a in
Table I is satisfied any time the occurrence of c (the activator)
is preceded eventually in the past by a (as ♢a is the target),
violated when the occurrence of c is not preceded eventually in
the past by a, and unaffected by every event in which c does not
occur. Notice that by declaring that the activator is c in Ψ1, the
user makes the “trigger” of the rule explicit. Ψ1 “ c ♢a and
Ψ2 “ d ♢e are the RCon representation of what are known
as PRECEDENCEpc, aq and RESPONSEpd, eq in the declarative
process specification language DECLARE [1], respectively. The
expressiveness of RCons fully covers that of LTLf and, a
fortiori, of DECLARE. The examination of the expressiveness
of RCons goes beyond the scope of this paper, though, and is
discussed more in detail in [7], [8].

Definition 3.2 (Rule-based LTLf process specification):
A rule-based LTLf process specification (henceforth, speci-
fication for short) is a finite non-empty set of RCons S fi

tΨ1, . . . ,Ψsu, with s P N.
For example, Table I presents a specification S “ tΨ1,Ψ2u

composed by the Ψ1 RCon above and Ψ2 “ d ♢e.
Corollary 3.1: Let S “ tΨ1, . . . ,Ψsu be a specification

consisting of s RCons, the activator and target of which are of
size up to }φ}. Labeling the events in L with the satisfaction
of activator and target of every RCon in S is feasible in
Opn3 ˆ }φ} ˆ |L| ˆ sq.
The proof follows from Corollary 2.1, as a pair of labels is
sufficient for all RCons in the specification. Take, e.g., trace
t4 “ xb, c, a, c, e, ay from Table I and the aforementioned RCon
Ψ1 “ c ♢a. The activator (c) is satisfied in pt4, 2q and pt4, 4q.
We can thus label every event in t4 thereby creating a new
sequence as follows: x0, 1, 0, 1, 0, 0y where 1 and 0 indicate a
satisfaction and a violation of the formula in the corresponding

event, respectively. Similarly, we can create a sequence of labels
denoting whether the target (♢a) is satisfied: x0, 0, 1, 1, 1, 1y.

A trivial approach to classify traces as compliant with
an RCons or not is to check whether no event violates it.
Nevertheless, especially in checking contexts, understanding
the extent to which a trace and a log satisfy a specification is
key [17]. Next, we lay the foundations rooted in probabilistic
theory to reach this goal.

IV. ESTIMATORS FOR LTLf FORMULAE

The interestigness measures for RCons are based on the
probabilities of their activator (φα) and target (φτ) LTLf

formulae. Thus, in this section, we propose estimators for the
probabilities of traces and logs satisfying LTLf formulae and
show that these estimators are computable in polynomial time.

A. Trace Estimators

We start by defining probabilistic models for the evaluation
of formulae over traces. One can consider the probability of
an event in a given trace t “ xe1, . . . , eny to satisfy an LTLf

formula φ as the degree to which φ is satisfied in that trace,
which we denote as P pφptqq.

Throughout this work, we assume the existence of a labeling
mechanism Ω that, when given an event e in a trace t and a
formula φ, marks the event with 1 if the event satisfies φ or
with 0 otherwise, i.e., Ωpe, φq P t0, 1u. This procedure can be
achieved in polynomial time as shown in Corollary 2.1 through
automata-based techniques for LTLf formulae verification [7].
Therefore, every trace t can be associated with a binary
sequence denoted by xφ,t “ xΩpe1, φq, . . . ,Ωpen, φqy. Take
again, e.g., t2 “ xe2,1, . . . , e2,9y “ xb, d, a, b, b, d, e, d, cy from
Table I, and formula φ “ d ^ ♢e. As only pt2, 2q and
pt2, 6q satisfy φ, Ωpe2,1, φq and Ωpe2,6, φq return 1 while
Ωpe2,i, φq is 0 for every i P t1, . . . , 9uzt2, 6u. Therefore,
xφ,t2 “ x0, 1, 0, 0, 0, 1, 0, 0, 0y.

Moreover, we assume that P pφptqq (the probability of t
to satisfy φ), is independent of the position of the event in
the trace. This is an uninformative prior assumption, i.e., we
assume that we are unaware of the values of other events and
of the event location within the trace when evaluating a specific
event. We intend to relax this assumption in future work.

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org)
identified by doi: 10.1109/ICPM57379.2022.9980690

Due to the event independence of evaluation assumption, the
sequence xφ,t can be viewed as an independent and identically
distributed (i.id.) draw from a Bernoulli random variable Xφ,t,
which takes the value of 1 with probability P pφptqq and 0
otherwise:

Xφ,t “

"

1, w.p. P pφptqq,

0, otherwise.
(1)

This leads us to our first estimator, namely that of P pφptqq.
Proposition 4.1: The maximum likelihood estimator (MLE)

for P pφptqq is
{P pφptqq “

n
ÿ

i“1

Ωpei, φq

n
. (2)

The proof follows from the assumption that Xφ,t is a univariate
Bernoulli random variable, whose MLE is well-established in
the literature (see, e.g., [18]).

Returning to our running example (Table I), the MLE
estimator is used to compute the trace probabilities of the
φα formula (P of act.) and of the φτ formula (P of target)
for each RCon φα φτ in S and for every trace t P L.
Let us consider again trace t4 “ xb, c, a, c, e, ay and the RCon
Ψ1 “ φα1

φτ1 “ c ♢a. As we have previously discussed
in Sec. III, the evaluation of φα1 and φτ1 on t4 leads to the
following sequences of labels, respectively: x0, 1, 0, 1, 0, 0y and
x0, 0, 1, 1, 1, 1y. Therefore, we conclude that {P pφα1

pt4qq is 2
6

and {P pφτ1pt4qq is 4
6 .

In order to obtain measures of interest for formulae and
specifications we must, in addition, obtain estimators for the
intersection of two LTLf formulae φ1 and φ2 being satisfied
(or violated) by a trace, e.g., P pφ1ptq X φ2ptqq, and for the
conditional distribution of φ1 to be satisfied (or violated) by
trace t conditional on φ2 being satisfied (or violated) by the
trace, e.g., P pφ1ptq|φ2ptqq.

The latter will be particularly useful to extend the estimators
to entire process specifications. Notice that we provide results
for the satisfaction of formulae, yet similar results can be
derived for violations (e.g., quantifying P p␣φ1ptq X φ2ptqq
and P p␣φ1ptq|φ2ptqq). Formalizing the above, we wish to
estimate the quantities of interest from a labeled sequence,

xpφ1,φ2q,t “ xpΩpei, φ1q,Ωpei, φ2qqy
n
i“1.

Take, e.g, t4 “ xb, c, a, c, e, ay from Table I and the pair
of activation and target of Ψ1 “ c ♢a, i.e., φα1

“ c
and φτ1 “ ♢a, respectively. We have that xpφα1

,φτ1
q,t4 is

xp0, 0q, p1, 0q, p0, 1q, p1, 1q, p0, 1q, p0, 1qy.
The resulting joint sequence xpφ1,φ2q,t is again assumed

to be an i.id. draw from a bivariate Bernoulli random vari-
able Xpφ1,φ2q,t. The bivariate Bernoulli corresponds to four
parameters related to the four possible outcomes, namely:

Xpφ1,φ2q,t “

$

’

’

’

&

’

’

’

%

p0, 0q, w.p p00,

p0, 1q, w.p p01,

p1, 0q, w.p p10,

p1, 1q, w.p p11,

(3)

such that
ř

i,j pij “ 1. A more detailed definition of bivariate
Bernoulli random variables is given in [19]. The estimation of
each pij is proposed in [20]. When estimating P pφ1ptqXφ2ptqq
we are essentially interested in an estimator for p11.

Proposition 4.2: The MLE for P pφ1ptq X φ2ptqq is
{P pφ1ptq X φ2ptqq “ p̂11 “

n
ÿ

i“1

Ωpei, φ1qΩpei, φ2q

n
. (4)

The proof follows from the use of estimators for pij (with
i, j P t0, 1u) provided in [20]. From the example above, we
conclude that {P pφα1

pt4q X φτ1pt4qq is 1
6 as only one element

in xpφα1
,φτ1

q,t4 is p1, 1q.
Similarly, we can estimate the other combinations of satis-

faction and violation of the two formulae (namely, p̂00, p̂01,
and p̂10). Having modeled the joint probability of two LTLf

formulae satisfied by a trace, we can now define the probability
of one formula being satisfied (or violated) by t conditioned
on another formula being satisfied (or violated) by the same
trace t. The conditional distribution of Xφ1,t | Xφ2,t “ x2

is a univariate Bernoulli that depends only on sequence x2

(which results from applying Ω to φ2 and t) and on the four
parameters pij of the joint bivariate Bernoulli distribution (see
the proof in [19]). This result leads to our estimators.

Proposition 4.3: The MLE for P pφ1ptq|φ2ptqq is
{P pφ1ptq|φ2ptqq “

p̂11
p̂01 ` p̂11

, (5)

with p̂11 as derived in Prop. 4.2 and p̂01 being

p̂01 “
n

ÿ

i“1

p1´ Ωpei, φ1qqΩpei, φ2q

n
. (6)

The outcome is due to the derivation of the conditional distri-
bution for bivariate Bernoulli (see [19]) and MLE estimation
in univariate Bernoulli (see [18]).1

Take, e.g., t4 “ xb, c, a, c, e, ay from Table I as above, φα1
“

c and φτ1 “ ♢a, namely the activator and target of Ψ1. We
have that {P pφτ1pt4q|φα1pt4qq is 1

2 as φα1 is satisfied by two
events, only one of which satisfies φτ1 too.

B. Log Estimators

We lift our results from traces to logs by estimating P pφpLqq,
i.e., the probability that the log L satisfies a formula φ. Recall
that an event log L “ ttj11 , . . . , tjmm u is a bag of traces with
trace tjii occurring ji times in the log. Let us denote with
L̄ “ tt1, . . . , tmu the set of unique traces in L. We assume that
the traces in L are independently generated by a trace generator
T , which is, in turn, associated with a discrete probability
function P pT “ tq.2 Let T be the support of the probability
distribution of T , i.e., T “ tt | P pT “ tq ą 0u.

First, we generalize our definitions from a given trace t to
a random trace T . To this end, we assume log completeness:
the log contains all possible traces that can be generated from
T , i.e., L̄ “ T . We plan to lift this assumption in future work.

Next, we shall define Xφ,T as a sequence of binary
evaluations – similarly to the approach we adopted to define
Xφ,t in Eq. (1), yet over a random trace T . Note that Xφ,T is
essentially a doubly stochastic Bernoulli random variable, as
its success probability, P pXφ,T “ 1q, changes for randomly

1When estimating {P pφ1ptq|φ2ptqq, the denominator of the estimator may
be equal to 0. In such a case, the conditional probability is ill-defined and the
trace is ignored for log-level computations; the value is denoted as NaN.

2In practice, the trace can be generated via a random walk over, e.g., a
finite-state automaton [21].

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org)
identified by doi: 10.1109/ICPM57379.2022.9980690

sampled traces. We shall use Xφ,T together with our log
completeness assumption to derive an estimator for P pφpLqq.
From the law of total probability (LTP) we get that

P pXφ,T “ xq “
ÿ

tPT
P pT “ tqP pXφ,t “ xq, (7)

which provides a link between log-based evaluation of formulae
and trace-based evaluation. Since we assume log completeness
we may replace T with L̄ in Eq. (7), plug in P pφpLqq
for P pXφ,T “ 1q, and P pφptqq for P pXφ,t “ 1q, thus
immediately arriving at an estimator for P pφpLqq.

Proposition 4.4: The MLE for P pφpLqq is

{P pφpLqq “
m
ÿ

i“1

{P pT “ tiq {P pφptiqq, (8)

with {P pφptiqq estimated as in Prop. 4.1, and

{P pT “ tiq “
ji

řm
k“1 jk

, (9)

with m being the number of unique traces in L.
The proof that Prop. 4.4 provides an MLE comes from

LTP and the fact that T and Xφ,t form a two-node Bayesian
network where T is directly followed by Xφ,t, which allows for
the use of MLE results for Bayesian networks (see [22]). For
example, t4 has a multiplicity of 12 considering the example
log in Table I. The cardinality of the example log L is 45, so

{P pt “ t4q is 12
45 . We saw in Sec. IV-A that {P pφα1

pt4qq is 2
6

for φα1
“ c. Therefore, the term for i “ 4 in the summation

of Eq. (8) is 12
45 ¨

2
6 ≊ 0.09 for φα1

. Extending the sum to
all the traces in L̄, we have that the value of {P pφα1

pLqq is
approximately 0.27.

To lift the estimators of intersection and conditional prob-
abilities from traces to logs, we can again apply the law of
total probability and derive the following.

Proposition 4.5: The MLE of P pφ1pLq X φ2pLqq is
{P pφ1pLq X φ2pLqq “

ÿ

tPL̄

{P pT “ tq {P pφ1ptq X φ2ptqq. (10)

with P pT “ tq being estimated as in Prop. 4.4 and P pφ1ptqX
φ2ptqq estimated using Prop. 4.2.
In Sec. IV-A, e.g., we showed that {P pφα1

pt4q X φτ1pt4qq is
1
6 considering the example log, φα1

as above, and φτ1 “ ♢a.
Recalling that {P pt “ t4q is 12

45 , we have that the term of the
summation in Eq. (10) for t “ t4 is 12

45 ¨
1
6 ≊ 0.04. The

value of {P pφα1
pLq X φτ1pLqq is computed by summing up

the elements obtained for every t P L̄, thus obtaining 0.22.
Lastly, we show an estimator for the conditional distribution

P pφ1pLq|φ2pLqq – similarly, we can provide estimators for
the other conditional probabilities as for traces.

Proposition 4.6: The MLE for P pφ1pLq|φ2pLqq is

{P pφ1pLq | φ2pLqq “
{P pφ1pLq X φ2pLqq

{P pφ2pLqq
, (11)

with {P pφ1pLq X φ2pLqq estimated as in Prop. 4.5, and
{P pφ2pLqq as in Prop. 4.4.

The proof follows from Kolmogorov’s analysis (see the
reasoning of the proof for Prop. 4.3). Notice that we assume

{P pφ2pLqq ą 0 as before to avoid division by zero. For instance,
we showed above that for the example log L in Table I the

estimations {P pφα1
pLq X φτ1pLqq and {P pφα1

pLqq are 0.22 and
0.27, respectively. By applying the computation above, we have
that {P pφτ1pLq | φα1

pLqq is 0.22
0.27 ≊ 0.82.

We conclude this section by highlighting that the computation
of the estimators described thus far is tractable.

Theorem 4.1: The estimators for LTLf formulae being
satisfied by a trace or a log, and the intersection and conditional
probabilities thereof are computable in polynomial time.
The proof relies on Theorem 2.1 and Corollary 2.1: once
we have checked and labeled the traces, the computation of
estimators requires only queries over the resulting labels, which
can be performed in Op|L| ˆ nq considering n as the length
of the longest trace in the log.

V. EVALUATION AND MEASUREMENT OF SPECIFICATIONS

In the previous section, we estimated the probabilities
of any LTLf formula. Yet, as the evaluation of an RCon
differs from that of an LTLf formula (see Sec. III), the
evaluation of a specification consisting of RCons should take
into account the interplay of activators and targets. The key
point is in how to evaluate an intersection of RCons (i.e., a
specification) on events. The rationale is that once we have
the evaluation of the specification on every event, we can
estimate the probabilities and consequently its measures like
for any other RCon. In the remainder of this section, we
start formalizing the semantics of RCon intersections, continue
proposing estimators of probabilities of traces and log satisfying
such specifications, and finally describe the computation of
interestingness measures.

A. Evaluating Specifications

Formally, we define the semantics of a specification S as
follows: given a trace t of length n, an instant i with 1 ď
i ď n, and a specification S fi tΨ1, . . . ,Ψsu, with s P N and
Ψj “ φαj

φτj for every j s.t. 1 ď j ď s, we say that
S is activated by t in i, i.e., pt, iq |ù Sα, iff there exists a
Ψj P S s.t. pt, iq (φαj ; S is satisfied by t in i, pt, iq |ù S , iff
pt, iq |ù Sα and there does not exist any Ψj P S s.t. pt, iq * Ψj ;
S is violated by t in i, pt, iq * S, iff there exists a Ψj P S
s.t. pt, iq * Ψj ; S is unaffected by t in i iff pt, iq * Sα.
In other words, S is activated if at least one of its RCons
is activated, satisfied if all and only its activated RCons are
satisfied, violated if at least one activated RCon is violated,
and unaffected if it is not activated.

In light of the above, we can express a specification S “
tΨ1, . . . ,Ψsu as an RCon, S “ Sα Sτ , where Sα and Sτ

are LTLf formulae expressed as follows:

Sα “

s
ł

j“1

φαj ; Sτ “

s
ľ

j“1

␣pφαj ^␣φτj q. (12)

For example, S from Table I is activated when either Ψ1 or Ψ2

are (i.e., Sα “ c_ d) and it is satisfied when all the activated
constraints are satisfied, i.e., Sτ “ p␣c _ ♢aq ^ p␣d _ ♢eq.
Hence, S is violated in pt3, 1q, e.g, because Ψ1 is violated and
satisfied in pt3, 2q, because Ψ2 is satisfied and Ψ1 is unaffected.
The possibility to reduce a specification to a single RCon is key

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org)
identified by doi: 10.1109/ICPM57379.2022.9980690

to defining the corresponding estimators and thereby computing
the probability a trace and a log satisfy it.

B. Estimators for Specifications
Trace Estimators: Let ΩR be an RCon interpreter that

takes an event and an RCon Ψ “ φα φτ and returns a
label ΩRpe,Ψq P t0, x, 1u corresponding to Ψ being violated,
unaffected, and satisfied by e, respectively. The labeling of an
event given an RCon Ψ resorts to Ω (explained in Sec. IV-A)
as follows:

ΩRpe,Ψq “

$

’

&

’

%

0, if Ωpe, φαq “ 1 and Ωpe, φτ q “ 0,

1, if Ωpe, φαq “ 1 and Ωpe, φτ q “ 1,

x, otherwise.
(13)

Notice that x is a new outcome of the labeling function ΩR

that solely applies to RCons but not to LTLf formulae (see the
definition of Ω in Sec. IV-A). The second column of Table I
lists the labels assigned by ΩR to every event in the traces
and all RCons in a sequence. For example, the evaluation
of Ψ1 “ φα1

φτ1 “ c ♢a on t4 “ xe4,1, . . . , e4,6y “
xb, c, a, c, e, ay is such that pt4, 1q * c, thus ΩRpe4,1,Ψ1q “ x;
also, we observe that pt4, 2q (c but pt4, 2q * ♢a, therefore
ΩRpe4,2,Ψ1q “ 0; finally, we have that pt4, 4q (c and
pt4, 4q (♢a, so ΩRpe4,4,Ψ1q “ 1. Following this approach,
we attain the following sequence of labels from t4 via ΩR on
Ψ1: xx, 0, x, 1, x, xy.

We are interested in estimating the probabilities of satisfac-
tion and violation of a given RCon in a trace, which corre-
spond to cases in which the RCon is activated. Formally, let
P pΨptqq “ P pφτ ptq | φαptqq be the probability of an RCon Ψ
to be satisfied by t, and let P p␣Ψptqq “ P p␣φτ ptq | φαptqq “
1 ´ P pφτ ptq | φαptqq be the complementary probability of
P pΨptqq being violated.

Proposition 5.1: The MLE of P pΨptqq is given by
{P pΨptqq “ {P pφτ ptq | φαptqq “

p̂11
p̂01 ` p̂11

, (14)

with p11 and p01 estimated as in Prop. 4.2, and the MLE of
P p␣Ψptqq given by {P p␣Ψptqq “ 1´ {P pΨptqq.
The proof follows from Prop.s 4.2 and 4.3. For example,

{P pΨ1pt4qq “
1
2 , as shown in Sec. IV-A.

At this stage, we turn to estimate the probabilities of interest
for a specification S (i.e., a set of RCons). Specifically, since a
specification is interpreted similarly to a single RCon, once we
obtained the interpretation for Sα and Sτ , we apply the labeling
mechanism ΩR to get one of the three possible outcomes,
which allows for the re-use of Prop. 5.1 to obtain estimators
for P pSptqq and P p␣Sptqq. The following proposition provides
our main results for estimating the probability of a trace to
satisfy a specification of RCons.

Proposition 5.2: The MLE of P pSptqq is given by
{P pSptqq “ {P pSτ ptq | Sαptqq “

p̂11
p̂01 ` p̂11

, (15)

with p11 and p01 estimated as in Prop. 4.2, and the MLE of
P p␣Sptqq given by {P p␣Sptqq “ 1´ {P pSptqq.
Notice that we use a similar notation for single RCons, replac-
ing Ψptq with Sptq to denote satisfaction of a specification. For
example, {P pSpt4qq “ 1

2 , as we consider only 0 or 1 outcomes
applying the computation described in Prop. 5.2.

Table II: Interestingness measures
Measure Trace Log

Support P pSα X Sτ , tq P pSα X Sτ , Lq

Confidence P pSτ |Sα, tq P pSτ |Sα, Lq

Recall P pSα|Sτ , tq P pSα|Sτ , Lq

Specificity P p␣Sτ |␣Sα, tq P p␣Sτ |␣Sα, Lq

Lift
P pSα X Sτ , tq

P pSα, tqP pSτ , tq

P pSα X Sτ , Lq

P pSα, LqP pSτ , Lq

Log Estimators: To derive log estimators we again assume
that L is complete, i.e., L̄ “ T with T being the support of
the probability distribution of T . In what follows, we provide
a result for a specification of RCons.

Proposition 5.3: Let P pSpLqq denote the probability of a
log L to satisfy a specification S. The MLE of P pSpLqq is
given by {P pSpLqq “

ř

tPL̄
{P pT “ tq {P pSptqq, and the MLE

of {P p␣SpLqq is given by 1´ {P pSpLqq.
The proof follows the same lines as that of Prop. 4.4.
Returning to the running example in Table I, {P pSpLqq is
p17¨1.0q`p6¨0.75q`p5¨0.80q`p12¨0.50q

45 “ 0.7.
Similarly to Sec. IV, we conclude providing a result that

states the computational complexity of our technique.
Theorem 5.1: The estimation of the interestingness measures

over specifications of RCon given an event log is polynomial.
The proof relies on a similar argument to the proof of
Theorem 4.1: each of the estimators is a query over the labeled
sequences that can be computed in Op|L| ˆ nq, considering n
as the length of the longest trace in L.

C. Computing Measures of Interestingness for Specifications

Having defined the estimators, we can now quantify the
interestingness of rule-based LTLf process specifications rely-
ing on association rule mining measures, as shown in Table II
(additional interestingness measures can be found in [7]). These
measures are based on the probabilities of the satisfaction of the
activator and target conditions for a rule on traces or logs [9],
which makes them suitable for measuring interestingness of
RCons. Let us consider a few examples of such measures:
Given a trace t, the Support measure, P pφαXφτ , tq, quantifies
the satisfaction both of the activator and target; Confidence,
P pφτ |φα, tq, considers the conditional occurrence of the target
given the occurrence of the activator; finally, Specificity,
P p␣φτ |␣φα, tq, measures the non-occurrence of the target
given the non-occurrence of the activator.

Measuring the interestingness of specifications is now
possible thanks to Prop.s 5.2 and 5.3. Specifically, the estimates
that we derive for specifications enable us to compute a plethora
of measures while considering the joint effects of multiple
rules at once, beyond their strict boolean conjunction. Thereby,
we advance the state of the art as measures were previously
restricted to a single-rule scope [7].

In the running example (see Table I), we use Prop.s 5.2
and 5.3 to compute the measures that appear in the last
five columns (Support, Confidence, etc.) for S “ tΨ1,Ψ2u.
Observing the result in the last line of Table I, e.g., we have
that {P pSpLqq is 0.7, which together with the probabilities of
activator and target of S yield a Support of 0.7 and Confidence
of 0.79.

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org)
identified by doi: 10.1109/ICPM57379.2022.9980690

VI. EVALUATION

We implemented our technique in a proof-of-concept Java
tool.3 The implementation natively supports a relevant set
of rule templates based on [23], but we already showed in
Sec. V that the technique is seamlessly applicable to any RCon.
It supports the computation of 37 measures inspired by [9].
In the following, we assess the usefulness of specifications
measurement on real-life data, applying our technique to the
results of various pattern-based LTLf specification miners,
i.e., Janus [8], MINERful [24], and Perracotta [25]. The real-
world dataset used for the experiments contains records of
patient visits at a Dutch hospital.4 The dataset exhibits high
variability: 75% of the traces are unique, which makes it a good
candidate to evaluate partially-satisfied specifications. Due to
space limitations, we show the outcome for one dataset. The
interested reader can find the scripts and input files to reproduce
the tests alongside output reports, additional experimental data
and the full collection of specification rules at https://oneiroe.
github.io/DeclarativeSpecificationMeasurements-static/.

We remark that our tool took around 35 s with the heaviest
setup (i.e., to compute 37 measures for a specification con-
taining 3202 rules and a log with 1050 traces) on an Intel
Core i5-7300U CPU at 2.60GHz, quad-core, 16GB of RAM,
running Ubuntu 18.04.6.

a) Measuring Single Rules and Entire Specifications:
First, we highlight the importance of checking an entire
specification, as opposed to the analysis of single rules. The
rationale is that while many specification miners use a threshold
to retrieve only rules satisfied for a number of times above that
value, the corresponding specification may present a satisfaction
degree below the desired level. We conducted the experiment as
follows. We discovered a specification from the log with each
miner. Then, we used our tool to compute the interestingness
measures on the log. Here we focus on Confidence, as all
miners implement a custom calculation for it. We repeated the
discovery step with increasing Confidence thresholds, from 0 to
1, at a step of 0.05. Finally, we compared the measures of the
specifications to the input threshold. The results can be found
in Fig. 1. Markedly, every miner returned specifications whose
overall Confidence was lower than the initially set threshold.
This issue may lead to sub-optimal results, similar to the
multiple testing problem [26] in statistical inference. With
our technique, it is possible to spot such behavior. Improving
declarative process specification miners with the integration of
our technique paves the path for an interesting future endeavor.

b) Differing Measures: We show how different specifica-
tions, though never violated in the log, may exhibit different
characteristics through the usage of multiple measures. To
retrieve multiple distinct specifications, we first mined a
specification with the miner set to discard partly violated
rules. Any miner would fit for the task, thus without loss
of generality we employed Janus with a Confidence threshold

3Publicly available at https://github.com/Oneiroe/Janus.
4The hospital dataset is publicly available at the following address:

http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JANUS MINERful PERRACOTTA

Confidence discovery threshold

D
is

co
ve

re
d

S
pe

ci
fic

at
io

n
C

on
fid

en
ce

Figure 1: Confidence of the mined specifications with respect
to the threshold used for their discovery

Table III: Measurements of sub-specifications
Measure Original S S1 S2 S3 S4 S5

Confidence 1.000 1.000 1.000 1.000 1.000 1.000

Support 1.000 0.052 0.190 0.748 0.965 1.000

Recall 1.000 0.169 1.000 1.000 1.000 1.000

Specificity NaN 0.728 1.000 1.000 1.000 NaN

Lift 1.000 3.221 5.250 1.338 1.037 1.000

set to 1 for all rules. The resulting specification consisted of
238 rules, which we partitioned randomly into 5 subsets of
RCons. Finally, we computed interestingness measures for each
of the sub-specifications. An excerpt of the results is reported
in Table III. The results show that, despite Confidence is 1 for
every specification, other measures can still spot differences.
For example, Specificity returns a division by zero for S5,
which suggests that the activator was satisfied in every event
of the log. Also, Lift shows that in S2 and S1 the satisfaction
of both activator and target is higher than their individual
satisfaction degree.

VII. RELATED WORK

Different contributions in the literature aim at quantitative
extensions of LTL/LTLf enriching the languages with quan-
titative operators. LTLrFs [27] introduces quality operators
quantifying over distinct satisfactions of a formula. Quantified-
LTL [28] uses quantifiers over its propositional variables, also
in probabilistic systems such as Markov chains. In [29], the
quantification of satisfaction is based on associating costs to
specification violations based on user ranking of tasks priority.
Differently from all of them, we do not extend the syntax and
semantics of LTLf with new operators, as we quantify the
satisfaction of formulae based on standard LTLf .

As for the interplay of temporal logic and probabilities, sta-
tistical model checking techniques [30] retrieve the probability
for a formula to be satisfied in a probabilistic environment
as Markov chains. Their goal is to predict the likelihood of a
formula for any possible execution (a probabilistic relaxation
of traditional model checking), while we study only already
executed traces. The method proposed in [31] is close to our
investigation, as it resorts to the association of a probability
threshold to each rule. The threshold is used to perform relaxed

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org)
identified by doi: 10.1109/ICPM57379.2022.9980690

https://oneiroe.github.io/DeclarativeSpecificationMeasurements-static/
https://oneiroe.github.io/DeclarativeSpecificationMeasurements-static/
https://github.com/Oneiroe/Janus
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

conformance checking: each rule should hold in at least a
portion of the log that is greater than that value. However,
only single rules are analyzed and the trace satisfaction is not
quantified but considered as boolean, whereas we can assess
the partial satisfaction of specifications, also on single traces.

In process mining, the compliance of process models to the
data is usually gauged with four scores: Fitness, Precision,
Generalization, and Simplicity [32]. In [33] Fitness, Precision,
and Generalization are devised for DECLARE models through
alignments, while in [34] Fitness and Precision are computed
for any regular language through entropy. Our framework
focuses on a different set of measures, inspired by association
rule mining. The comparison and integration of the four
measures above paves the path for future research endeavors.
Notably, the novel measure of informativeness is proposed
in [35] to understand the differences between compliant traces.
We showed in Sec. VI how different measures can spot
differences in compliant specifications, thus a deeper analysis
in this direction is an interesting research outlook.

VIII. CONCLUSION

In this paper, we presented a tractable approach to quantify
the satisfaction degree of rule-based LTLf specifications on
bags of traces. Our approach is grounded in probabilistic models
with which we have derived maximum-likelihood estimators.
We apply our prototype to real-world data, showing it is possible
to evaluate existing specification miners beyond the boolean
satisfaction of the intersection of all formulae.

Our result for LTLf can be easily extended to Linear
Dynamic Logic over Finite Traces [10], which has the ex-
pressive power of Monadic Second Order Logic, but with
the same computational cost of LTLf . Moreover, we aim
to explore the enrichment of log labeling with additional
contextual data (such as patient diagnoses) akin to [36] and
construct estimators that take this information into account.
Specifically, a possible extension would be to model the
event of satisfying a formula conditional on context via
logistic regression. Another interesting outlook would be the
employment of specifications measures as features of the data
for machine learning applications, e.g., trace clustering [37].

REFERENCES

[1] M. Pesic, D. Bosnacki, and W. van der Aalst, “Enacting declarative
languages using LTL: avoiding errors and improving performance,” in
SPIN, 2010, pp. 146–161.

[2] G. De Giacomo, P. Felli, M. Montali, and G. Perelli, “HyperLDLf: a
logic for checking properties of finite traces process logs,” in IJCAI,
2021, pp. 1859–1865.

[3] F. Bacchus and F. Kabanza, “Planning for temporally extended goals,”
in AAAI/IAAI, Vol. 2, 1996, pp. 1215–1222.

[4] A. Camacho, E. Triantafillou, C. Muise, J. Baier, and S. McIlraith, “Non-
deterministic planning with temporally extended goals: LTL over finite
and infinite traces,” in AAAI, 2017, pp. 3716–3724.

[5] C. Lemieux, D. Park, and I. Beschastnikh, “General LTL specification
mining (T),” in ASE, 2015, pp. 81–92.

[6] Z. Cao, Y. Tian, T. Le, and D. Lo, “Rule-based specification mining
leveraging learning to rank,” Autom. Softw. Eng., vol. 25, no. 3, pp.
501–530, 2018.

[7] A. Cecconi, G. De Giacomo, C. Di Ciccio, F. Maggi, and J. Mendling,
“Measuring the interestingness of temporal logic behavioral specifications
in process mining,” Information Systems, p. 101920, 2021.

[8] A. Cecconi, C. Di Ciccio, G. De Giacomo, and J. Mendling, “Inter-
estingness of traces in declarative process mining: The Janus LTLp f
approach,” in BPM, 2018, pp. 121–138.

[9] L. Geng and H. Hamilton, “Interestingness measures for data mining: A
survey,” ACM Comput. Surv., vol. 38, no. 3, p. 9, 2006.

[10] G. De Giacomo and M. Vardi, “Linear temporal logic and linear dynamic
logic on finite traces,” in IJCAI, 2013, pp. 854–860.

[11] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977, pp. 46–57.
[12] C. Di Ciccio and M. Montali, “Declarative process specifications:

Reasoning, discovery, monitoring,” in Process Mining Handbook, W. M. P.
van der Aalst and J. Carmona, Eds. Springer, 2022, pp. 108–152.

[13] O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory of the past,” in
Logic of Programs, 1985, pp. 196–218.

[14] I. Hodkinson and M. Reynolds, “Separation - past, present, and future,”
in We Will Show Them! (2), 2005, pp. 117–142.

[15] G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning on LTL on
finite traces: Insensitivity to infiniteness,” in AAAI, 2014, pp. 1027–1033.

[16] V. Fionda and G. Greco, “The complexity of LTL on finite traces: Hard
and easy fragments,” in AAAI, 2016, pp. 971–977.

[17] G. De Giacomo, F. Maggi, A. Marrella, and S. Sardiña, “Computing
trace alignment against declarative process models through planning,” in
ICAPS, 2016, pp. 367–375.

[18] P. Bickel and K. Doksum, Mathematical statistics: basic ideas and
selected topics, volumes I-II package. CRC Press, 2015.

[19] B. Dai, S. Ding, and G. Wahba, “Multivariate bernoulli distribution,”
Bernoulli, vol. 19, no. 4, pp. 1465–1483, 2013.

[20] S. Ip and J. Xue, “A multivariate regression view of multi-label
classification,” University College London, Tech. Rep., 2015.

[21] C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating
event logs through the simulation of Declare models,” in EOMAS@CAiSE,
2015, pp. 20–36.

[22] F. Jensen and T. Nielsen, Bayesian networks and decision graphs.
Springer, 2007, vol. 2.

[23] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property specifications
for finite-state verification,” in ICSE, 1999, pp. 411–420.

[24] C. Di Ciccio and M. Mecella, “On the discovery of declarative control
flows for artful processes,” ACM Trans. Manag. Inf. Syst., vol. 5, no. 4,
pp. 24:1–24:37, 2015.

[25] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta: mining
temporal API rules from imperfect traces,” in ICSE, 2006, pp. 282–291.

[26] W. Hämäläinen and G. Webb, “A tutorial on statistically sound pattern
discovery,” Data Min. Knowl. Discov., vol. 33, no. 2, pp. 325–377, 2019.

[27] S. Almagor, U. Boker, and O. Kupferman, “Formally reasoning about
quality,” J. ACM, vol. 63, no. 3, pp. 24:1–24:56, 2016.

[28] J. Piribauer, C. Baier, N. Bertrand, and O. Sankur, “Quantified linear
temporal logic over probabilistic systems with an application to vacuity
checking,” in CONCUR, 2021, pp. 7:1–7:18.

[29] M. Lahijanian, S. Almagor, D. Fried, L. Kavraki, and M. Vardi, “This
time the robot settles for a cost: A quantitative approach to temporal
logic planning with partial satisfaction,” in AAAI, 2015, pp. 3664–3671.

[30] A. Legay, A. Lukina, L. Traonouez, J. Yang, S. Smolka, and R. Grosu,
“Statistical model checking,” in Computing and Software Science - State
of the Art and Perspectives, 2019, pp. 478–504.

[31] F. Maggi, M. Montali, and R. Peñaloza, “Temporal logics over finite
traces with uncertainty,” in AAAI, 2020, pp. 10 218–10 225.

[32] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “Quality
dimensions in process discovery: The importance of fitness, precision,
generalization and simplicity,” Int. J. Cooperative Inf. Syst., vol. 23,
no. 01, p. 1440001, 2014.

[33] M. De Leoni, F. Maggi, and W. van der Aalst, “An alignment-based
framework to check the conformance of declarative process models and
to preprocess event-log data,” Inf. Syst., vol. 47, pp. 258–277, 2015.

[34] A. Polyvyanyy, A. Solti, M. Weidlich, C. Di Ciccio, and J. Mendling,
“Monotone precision and recall measures for comparing executions and
specifications of dynamic systems,” ACM Trans. Softw. Eng. Methodol.,
vol. 29, no. 3, pp. 17:1–17:41, 2020.

[35] A. Burattin, G. Guizzardi, F. M. Maggi, and M. Montali, “Fifty shades of
green: How informative is a compliant process trace?” in CAiSE, 2019,
pp. 611–626.

[36] S. Schönig, C. Di Ciccio, F. M. Maggi, and J. Mendling, “Discovery
of multi-perspective declarative process models,” in ICSOC, 2016, pp.
87–103.

[37] J. De Weerdt, “Trace clustering,” in Encyclopedia of Big Data Technolo-
gies, 2019.

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org)
identified by doi: 10.1109/ICPM57379.2022.9980690

This document is a pre-print copy of the manuscript
(Cecconi, Di Ciccio, and Senderovich 2022)

published by IEEE (available at ieeexplore.ieee.org).

The final version of the paper is identified by doi: 10.1109/ICPM57379.2022.9980690

References

Cecconi, Alessio, Claudio Di Ciccio, and Arik Senderovich (2022). “Measurement of Rule-based LTLf
Declarative Process Specifications”. In: ICPM. Ed. by Andrea Burattin, Artem Polyvyanyy, and
Barbara Weber. IEEE, pp. 96–103. isbn: 979-8-3503-9714-7. doi: 10.1109/ICPM57379.2022.
9980690.

BibTeX
@InProceedings{ Cecconi.etal/ICPM2022:MeasurementLTLfSpecifications,

author = {Cecconi, Alessio and Di Ciccio, Claudio and Senderovich,
Arik},

booktitle = {ICPM},
title = {Measurement of Rule-based {LTL}f Declarative Process

Specifications},
year = {2022},
pages = {96--103},
crossref = {ICPM2022},
doi = {10.1109/ICPM57379.2022.9980690},
keywords = {Linear temporal logic; Declarative process mining;

Specification mining; Probabilistic modeling; Statistical
estimation}

}
@Proceedings{ ICPM2022,

title = {4th International Conference on Process Mining, {ICPM}
2022, Bolzano, Italy, October 23-28, 2022},

year = {2022},
editor = {Andrea Burattin and Artem Polyvyanyy and Barbara Weber},
isbn = {979-8-3503-9714-7},
publisher = {{IEEE}}

}

http://ieeexplore.ieee.org/
https://doi.org/10.1109/ICPM57379.2022.9980690
https://doi.org/10.1109/ICPM57379.2022.9980690
https://doi.org/10.1109/ICPM57379.2022.9980690

	Introduction
	Event logs and ltlf
	Rules as rf
	Estimators for ltlf Formulae
	Trace Estimators
	Log Estimators

	Evaluation and Measurement of Specifications
	Evaluating Specifications
	Estimators for Specifications
	Computing Measures of Interestingness for Specifications

	Evaluation
	Related Work
	Conclusion
	References

