
Model Checking of Mixed-Paradigm Process
Models in a Discovery Context

Finding the Fit Between Declarative and Procedural

Johannes De Smedt1, Claudio Di Ciccio2, Jan Vanthienen1, and Jan Mendling2

1 Department of Decision Sciences and Information Management, Faculty of
Economics and Business, KU Leuven, Leuven, Belgium
{johannes.desmedt;jan.vanthienen}@kuleuven.be

2 Department of Information Systems and Operations, Vienna University of
Economics and Business, Vienna, Austria

{claudio.di.ciccio;jan.mendling}@wu.ac.at

Abstract. The act of retrieving process models from event-based data
logs can offer valuable information to business owners. Many approaches
have been proposed for this purpose, mining for either a procedural or
declarative outcome. A blended approach that combines both process
model paradigms exists and offers a great way to deal with process en-
vironments which consist of different layers of flexibility. In this paper,
it will be shown how to check such models for correctness, and how this
checking can contribute to retrieving the models as well. The approach
is based on intersecting both parts of the model and provides an effec-
tive way to check (i) whether the behavior is aligned, and (ii) where the
model can be improved according to errors that arise along the respec-
tive paradigms. To this end, we extend the functionality of Fusion Miner,
a mixed-paradigm process miner, in a way to inspect which amount of
flexibility is right for the event log. The procedure is demonstrated with
an implemented model checker and verified on real-life event logs.

Keywords: Declarative process models, Model checking, Process mining

1 Introduction

The field of process discovery [1] has witnessed the introduction of a vast amount
of approaches, both of a procedural [2,3,4] and a declarative [5,6] nature. Both
paradigms put a different emphasis on the retrieval of control flow constructs.
On the one hand, the former fits activities in paths that are extended with con-
trol flow routing objects such as (X)OR- and AND-splits and -joins. Exemplary
models include Petri nets and BPMN [7]. The latter, on the other hand, typically
encompasses a constraint-based approach that captures behavior in the event log
by fitting sequence rules over the activities. Most notably, the Declare language
[8] has often been applied in this context [5,6]. Intermediate approaches exist in
the form of Hybrid Miner [9] and Fusion Miner [10,11]. The latter mines process

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

models with intertwined state spaces, whereas the former bases upon atomic
subprocesses that use either paradigm, as in [9]. This type of process mining
goes beyond the traditional techniques and fits different types of behavior in the
log with the appropriate paradigm, i.e., the fixed sequences are captured with
procedural process discovery techniques, while behavior that is hard to fit within
such fixed sequence is mined with declarative techniques. Tackling a log in such a
fashion yields more comprehensive though fitting and precise models, especially
in the case of environments where multiple levels of flexibility exist. The valida-
tion aspect of the retrieved models, however, has still not been investigated yet.
In this paper, the checking of mixed-paradigm models is elaborated by finding
the common ground of both model types in the form of a global automaton. By
using such a single executable model, the behavior of the discovery produce can
be checked for inconsistent behavior, which can be pinpointed along the different
paradigms.

The paper is organized as follows. Section 2 provides a motivation for the
usefulness of the approach. Section 3 introduces the formalisms which are further
used to explain the model checking and mining techniques in Section 4. Section 5
evaluates the approach on a real-life data log, which is followed by the conclusion
and future work in Section 6.

2 Motivation

Mixed-paradigm models consist of a blend of procedural and declarative pro-
cess models. More precisely, this entails models which on the one hand contain
fixed execution paths, while on the other hand incorporate activity-based rules.
Constructing such models is not always straightforward, as one has to be able
to grasp the intricacies of both parts, as well as the effect they have on one
another. Especially for process discovery, a consistency problem regarding the
internal behavior can occur. Because both models are mined separately, though
over the same alphabet, many conflicts can occur. For instance, the procedural
model might allow for an activity to be enabled, while the declarative model
does not, or vice versa. In this case, the activity has to conform to the most
restricting model and become disabled. However, this might cause deadlocks for
the other model later on, where the activity is not enabled or did not enable
another activity that is needed to reach the final state(s) of the model. Consider
the model in Figure 1. A procedural Petri net model is combined with multiple
Declare constraints. In order to reach a marking containing p5, precedence(g,c)
and not no-existence(f,g) cannot reside in the model together, as b requires f to
fire first, which means that c can never be executed as g cannot fire anymore
and c is in a precedence relation with g.

The challenge is to find whether the behavior of both models is compatible
and can be used as a whole, and if not, where the discrepancies reside. This might
lead to insights into how the model types interact, e.g., the procedural model
might be too restrictive to allow for the more flexible behavior of the declarative
model. By pinpointing which constraints are not working out with the procedural

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

precedence

alternate
precedence

precedence
alternate
succession

not co-
existence

p1

1

p2 p3 p4 p5a b c

e f g

t

d

Fig. 1: An example of a mixed-paradigm model containing inconsistencies.

model, the modeler or miner might react accordingly. This is the principle that is
used by the model checking approach proposed in this paper. By incrementally
matching both models, the maximal conjoined behavior is sought after, ideally
yielding a full match of behavior. Furthermore, Fusion Miner is adopted to also
recognize procedural models with a vast state space. This reflects the presence
of either a vast model, or of a model with many routing constructs for achieving
a wide array of execution paths. The latter indicates that the model is either
overfitting, or tries to capture a vast deal of the flexibility still, which conflicts
with the aim of the approach to capture flexibility with the declarative process
model. Hence, the algorithm adapts itself automatically to revise its outcome to
shift the balance of the model towards the declarative part.

3 Preliminaries

In this section, we outline the notions upon which our approach is devised. We
explain the concept of a mixed-paradigm process, along with the description of
the modeling languages that are utilized respectively for the declarative and the
procedural part, i.e., Declare and Petri nets. Previous work of which the imple-
mentation in CPN Tools is a well-known example [12], proposes building the dif-
ferent execution automata and joining them on-the-fly for simulation purposes.
The aim of this work, however, is not to ensure execution ex-ante, but rather to
check whether a discovered mixed-paradigm process model is executable ex-post.

3.1 Mixed-Paradigm Models

Mixed-paradigm models consist of a combination of both procedural and declar-
ative model constructs. In this paper we use Petri nets [7] and Declare [13] to
represent either paradigm, because they are commonly used languages for such
endeavors [14,15].

More formally, we define the activities of the model as a finite set A, for
which any type of connection F ⊆ A × A can exist. There exist four types of
activities:

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

D ⊆ A: the activities appearing in the declarative model,
S ⊆ A: the activities appearing in the procedural model,
DD ⊆ D \ S: the activities only appearing in the declarative model, and
SS ⊆ S \D: the activities only appearing in the procedural model.

Hence, there are four corresponding connection types:

FD ⊆ D ×D: the connections in the declarative model,
FDS ⊆ D × S: the connections from the declarative to the procedural model,
FSD ⊆ S ×D: the connections from the procedural to the declarative model,

and
FS ⊆ S × S: the connections in the procedural model.

The declarative model, being a constraint-based Declare model, is defined as a
tuple DM = (D,FD) with FD the set of constraints defined over D. They can
be of any kind as listed in Table 1. For simplicity, we only consider unary and
binary constraints, but the proposed technique would be able to incorporate any
type of constraints that are expressed in the same (finite) execution semantics.
All constraints can be expressed as regular expressions, which yield finite state
automata (FSA) [16,17]. The automaton of a single constraint f ∈ FD is denoted
as α(f). The conjunction of two or more constraints corresponds to the product
⊗ of the related automata. Therefore, to get the full behavior of the model, the
separate automata are conjoined to build the global automaton by means of the
product operation: Φ =

∏
f∈FD

α(f).
The procedural model is defined as a Petri net, namely a tuple PN =

(P, SPN , FPN , L) with P a set of finite places, SPN the set of transitions,
which coincide with the aforementioned procedural activities, and FPN ⊆ (P ×
SPN) ∪ (SPN × P). We consider Petri nets without weighed arcs, reset and
inhibitor arcs, coloring, or stochastic extension, but with an injective labeling
function L : SPN → S ∪ τ with τ silent transitions used for routing purposes.
For every s ∈ SPN , the preset of places is defined as •s = {p | (p, s) ∈ FPN}
and the postset of places as s• = {p | (s, p) ∈ FPN}. A marking is a function
M : P → N which assigns a number of tokens to a place. M0 is the initial mark-
ing of the net. A transition s ∈ SPN is said to be enabled iff ∀p ∈ •s, M(p) > 0.
When a transition s fires, all output places in s• receive an extra token, and
from all input places in •s a token is subtracted. The new marking M ′ is
thus such that: ∀p ∈ •s M ′(p) = M(p)− 1, ∀p ∈ s • M ′(p) = M(p) + 1, and
∀p ∈ P \ {s • ∪ • s} M ′(p) = M(p). Every marking that is generated by a se-
quence of firings from M is said to be reachable from M . A net is bounded when
the number of reachable markings from M0 is finite.

For a bounded Petri net, a reachability graph can be calculated [7,20]. The
reachability graph of a bounded Petri net is a transition system constructed as
follows. The initial marking is the initial state. Every reachable marking from M0

is a state. Transitions between pairs of states represent the transitions that lead
from a marking to another by means of a firing. A state in which no transitions
are enabled anymore is called a final state. In the following, we assume that the
Petri nets used to represent procedural models are bounded.

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

Template Regular Expression [18,19] Description

Existence(A,n) .*(A.*){n} Activity A happens at least n times.
Absence(A,n) [^A]*(A?[^A]*){n} Activity A happens at most n times.
Exactly(A,n) [^A]*(A[^A]*){n} Activity A happens exactly n times.
Init(A) (A.*)? Each instance has to start with activity A.
Last(A) .*A Each instance has to end with activity A.
Responded existence(A,B) [^A]*((A.*B.*)|(B.*A.*))? If A happens at least once then B has to happen

or happened before A.
Co-existence(A,B) [^AB]*((A.*B.*)|(B.*A.*))? If A happens then B has to happen or happened

after after A, and vice versa.
Response(A,B) [^A]*(A.*B)*[^A]* Whenever activity A happens, activity B has to

happen eventually afterward.
Precedence(A,B) [^B]*(A.*B)*[^B]* Whenever activity B happens, activity A has to

have happened before it.
Alternate response(A,B) [^A]*(A[^A]*B[^A]*)* After each activity A, at least one activity B

is executed. A following activity A can be ex-
ecuted again only after the first occurrence of
activity B.

Alternate precedence(A,B) [^B]*(A[^B]*B[^B]*)* Before each activity B, at least one activity A
is executed. A following activity B can be exe-
cuted again only after the first next occurrence
of activity A.

Chain response(A,B) [^A]*(AB[^A]*)* Every time activity A happens, it must be di-
rectly followed by activity B (activity B can also
follow other activities).

Chain precedence(A,B) [^B]*(AB[^B]*)* Every time activity B happens, it must be di-
rectly preceded by activity A (activity A can
also precede other activities).

Not co-existence(A,B) [^AB]*((A[^B]*)|(B[^A]*))? Either activity A or B can happen, but not both.
Not succession(A,B) [^A]*(A[^B]*)* Activity A cannot be followed by activity B, and

activity B cannot be preceded by activity A.
Not chain succession(A,B) [^A]*(A+[^AB][^A]*)*A* Activities A and B can never directly follow

each other.
Choice(A,B) .*[AB].* Activity A or activity B has to happen at least

once, possibly both.
Exclusive choice(A,B) ([^B]*A[^B]*)|.*[AB].*([^A]*B[^A]*) Activity A or activity B has to happen at least

once, but not both.

Table 1: An overview of Declare constraint templates with their corresponding
LTL formulas, regular expressions, and verbose descriptions.

For a mixed-model, we assume to deal with closed-world models, i.e., only
the activities in A can be used in the model. Nevertheless, A can be extended
to also include activities that are neither constrained in the Declare model, nor
included in S. The injective labeling function makes it possible to deal with
duplicate activities and silent transitions, as there exists a unique element for
each silent or duplicate activity in the Petri net.

4 Model Checking Approach

In the following section, we describe our approach to check the consistency of a
mixed-paradigm model. Thereafter, we show that it can be used in the context
of mining to reduce the required computational expensiveness.

4.1 Model Checking

The model checking approach is based on automaton multiplication, as inspired
by [16]. In order to verify whether a mixed-paradigm model does not have any
conflicting states, both models are brought to the same execution model, being
a finite state automaton. For the Petri net, the reachability graph is calculated
(Algorithm 1, line 2). In the presence of deadlocks, the reachability graph will not
reach a state in which there is an end marking without remaining tokens. In this
case, the conjoining would not work and the Petri net should be checked for errors

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

on its own. Next, all the constraints in the declarative model are checked for
compatibility with the reachability automaton by conjoining its executable form,
also an FSA, with the procedural model (line 19-20). In case the full declarative
model does not conflict, the result ΦMPM will contain the full behavior of both
models without the conflicting states. If not, the declarative model with the
most non-conflicting constraints will be returned (line 7-11). Another possibility
is to check the declarative model up front with the approach discussed in [16]
and available in the MINERful framework3, which also checks for constraint
redundancy.

Iteratively conjoining constraints to get the biggest set of non-conflicting
Declare constraints might be computationally inefficient in case of very big con-
straint sets. This can be resolved by introducing a priority scheme that checks
unary and negative constraints (e.g. exactly2 and not succession) last, because
they often impose a high degree of interaction with other constraints [21]. Fur-
thermore, this can also help to resolve the issue of choosing one constraint set
over the other in the case of equal sizes. Note that the approach can also be
tailored towards analyzing process mining results.

Algorithm 1 Model checking procedure for mixed-paradigm models.
Output: ΦMPM

1: procedure calculateModel(DM,PN)
2: ΦPN ← calculateReachabilityGraph(PN)
3: ΦMPM = ∅, b = 0, V ← ∅
4: for f ∈ FD do
5: ΦT , V ← checkConstraintForConflicts(ΦPN , FD, f, V)
6: if V = FD then
7: ΦMPM ← ΦT

8: break
9: end if
10: if |V | > b then
11: b← |V |
12: ΦMPM ← ΦT

13: end if
14: end for
15: return ΦMPM

16: end procedure

17: procedure checkConstraintForConflicts(Φ, FD, f, V)
18: V ← f
19: if Φ⊗ α(f) 6= ∅ then
20: ΦPN ← Φ⊗ α(f)
21: for g ∈ FD \ V do
22: checkConstraintForConflicts(ΦPN , g, V)
23: end for
24: end if
25: return ΦPN , V
26: end procedure

Example Consider the model in Figure 1 again. The reachability graph of the
procedural model is relatively small and is presented in Figure 2. The initial
marking is M0(p1) = 1. The algorithm iteratively tests whether the constraints
in the declarative part of the model can be intersected with this state space.

3 https://github.com/cdc08x/MINERful

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

https://github.com/cdc08x/MINERful

Clearly, not co-existence(f,g) and precedence(f,b) cannot co-exist in this model,
as c can never be executed when g is prohibited from firing through not co-
existence(f,g). Therefore, one of these constraints is disregarded by the model
checker to provide a final execution automaton for the model. According to the
priority strategy, this is the case for not co-existence(f,g).

a
b c

t
d

0

A\{e,f}
1

e

2

f

f

A\{e,f}

A\{e,f}

0

A\{e,b}

1
e

2b

b

A\{e,b}

e

A\{e,b}

0

A\{f,g}
1

f

2

g

A\{f,g}

3

g

A\{f,g}
f

A\{f,g}

0

A\{f,b}
1

f

2

b

A\{f,b}

A\{f,b}
0

A\{g,c}
1

g

2

c

A\{g,c}

A\{g,c}

SS Petri net

alternate precedence(e,f) precedence(g,c) not co-existence(f,g)precedence(f,b)

alternate succession(e,b)

Fig. 2: The state space of the Petri net and the Declare constraints’ automata
from Figure 1.

4.2 Better Mining with Model Checking Iterations

Next to checking models, the model checking algorithm can also be used to
guide the discovery algorithm towards a better solution in the following way.
Since calculating the reachability graph can be computationally expensive, the
algorithm can be adapted as follows. Starting from the initially assigned value,
the entropy level is subsequently raised to increase the size of the declarative
part versus the procedural one. In the extreme case, the algorithm resorts to
mining solely a declarative model, for which the model checker is guaranteed to
finish. Hence, the algorithm actually checks the amount of flexibility that is in
the log and adapts itself accordingly to the amount of ‘declarativeness’ that is
needed. We call this the self-learning capability of the approach.

In order to achieve this, the Fusion Miner algorithm (as documented in [11])
is adapted to check whether the reachability graph of the procedural model can
be calculated, containing less than a certain number of states (Algorithm 2, line
8). This number is calculated based on a threshold n, a model size multiplication
coefficient, and the size of the procedural model, i.e., n× |SPN | × 1, 000. If the
graph cannot be calculated, the entropy measure is raised by another threshold
called resilience coefficient, r, to reiterate the process towards a model consisting
of a bigger declarative part and a smaller procedural one (line 20).

Example Consider the procedural model produced by Fusion Miner depticted
in Figure 3. The procedural part of the model has to take into account many
different ways of enabling d in between the other activities, introducing many

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

Algorithm 2 FusionMINERFul algorithm.
Output: ΦMPM

1: procedure calculateModel(T, e, n, r) . Input: set of traces T , entropy measure e and
2: ΦMPM ← ∅ . resilience measure r
3: while ΦMPM = ∅ do
4: D ← getEntropicActivities(T, e)
5: DM ← MINERful(T,D)
6: PN ← HeuristicsMiner(T,A \D)
7: ΦPN ← calculateReachabilityGraph(PN, n) . Returns an empty set after
8: V ← ∅, b← 0 . n× |S| × 1, 000 states
9: if ΦPN 6= ∅ then
10: for f ∈ FD do
11: ΦT ← checkConstraintForConflicts(ΦPN , FD, f, V)
12: if V = FD then
13: ΦMPM ← ΦT

14: break
15: end if
16: if |V | > b then
17: b← |V |
18: ΦMPM ← ΦT

19: end if
20: end for
21: else
22: e← e+ r
23: end if
24: end while
25: return ΦMPM

26: end procedure

silent transitions. Calculating the reachability graph will yield an enormous au-
tomaton, requiring computationally expensive conjoining operations. Because
the reachability graph calculation is stopped after 32,000 (2 × 16 × 1000 when
n = 2) states, the algorithm repeats its main procedure with an entropy level e
which is increased by r. For e = 0.4 and r = 0.1, the resulting model eliminates
the need for invisible transitions by removing d from the procedural workflow,
as depicted in Figure 4.

succession

precedence

alternate precedence

alternate
precedenceprecedence

precedence

1

a b

c

d

e f

Fig. 3: Mixed-paradigm output of FusionMINERFul for an entropy level of 0.4.

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

succession

succession
alternate
precedence

succession

precedence
alternate
precedence

precedence

1

a b c

d

1..*

e

1..*

f

1..*

Fig. 4: Mixed-paradigm output of FusionMINERFul for the same event log after
the entropy level was raised to 0.5.

5 Implementation and Evaluation

In this section, the implementation in FusionMINERFul is introduced. Next, this
process mining tool is used to evaluate the approach on the 2012 BPI Challenge4

event log.

5.1 Implementation

Mining a mixed-paradigm model with intertwined state spaces was introduced
by Fusion Miner [11]. This mining algorithm uses the notion of entropy to find
activity types in the log that do not fit a strict workflow well, based on the
dependency information of Heuristics Miner [2]. Activities are divided into D,
S, DD, and SS. FD, FDS , and FS are mined, while FSD is not considered
to avoid too convoluted models that have a high risk of inconsistencies. For
this work, a new version called FusionMINERFul is used. This algorithm uses
MINERFul [6] to derive FD and FDS and Heuristics Miner to mine FS .The
technique also relies on the state space analysis tools which can be found in
ProM5. The implementation is compatible with ProM and can be found at
http://www.processmining.be/fusionminerful/, together with high resolu-
tion versions of the figures in this paper. The final output model is represented
as a dependency graph with Declare constraints [11], which can be converted to
a Petri net with Declare constraints. This serves as the basis for the model check-
ing approach. In the output, removed constraints are colored differently, and the
implementation also include the self-learning capability. Blue arcs comprise the
procedural model, while black annotated arcs contain Declare constraints. Nega-
tive constraints are yellow, while constraints removed during verification are red.
Declarative activities use dashed outlines, and gray and red coloring indicates
existence(A,1) and exactly(A,1) respectively.

4 DOI: 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
5 http://www.promtools.org/

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

http://www.processmining.be/fusionminerful/
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://www.promtools.org/

Fig. 5: Output of FusionMINERFul for the X subprocess of BPIC 2012. The set-
up is: initial entropy level e of 0, resilience r of 0.1, and model size multiplicator
n of 10. The entropy-level remains unchanged, indicating the log to contain
procedural behavior.

Fig. 6: Output of FusionMINERFul for the Y subprocess of the BPIC 2012. The
set-up is: e = 0, eventually raised to 0.2, r = 0.1, and n = 10.

5.2 Application to BPIC 2012

The approach of model checking with FusionMINERFul has been tested on the
2012 BPI Challenge event log (BPIC 2012). This log consists of three distinct
subprocesses which will be treated separately, in analogy with the approach
followed in [22]. The goal is to find out whether the model that is discovered
is sound, and how well FusionMINERFul can determine the level of flexibility
that is needed for mining an informative process model. To test the self-learning
capabilities of the algorithm, the initial entropy level is always kept at 0, giving
the algorithm the chance to adapt itself according to whether a procedural finite
state space can be constructed. The model size multiplicator level was set to 10,
and the resilience measure at 0.1.

The first subprocess, X, does not contain any behavior that is too unstruc-
tured to handle in a procedural model, hence the algorithm does not raise the
entropy level. In this case, the full model of Heuristics Miner is outputted, as
can be seen in Figure 5. The second subprocess, subprocess Y , shows a low level
of flexibility. In this case, two iterations finally churned out the process that can

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

Fig. 7: Output of FusionMINERFul for the Z subprocess of BPIC 2012. The
set-up is: e = 0, eventually raised to 1.0, r = 0.1, and n = 10.

be seen in Figure 6. Finally, the last subprocess, Z, reaches the maximal entropy
level of 1, indicating that the process can be considered very unstructured. Only
the Declare model is outputted, as can be seen in Figure 7, which contains many
negative constraints and one conflicting constraint which is removed from the
model.

Overall, the approach is capable of detecting inconsistencies, although few
appeared. This is in line with the intuition established in [16]. Furthermore,
FusionMINERFul is also capable of finding different levels of flexibility which
approaches the results from Heuristics Miner and ILP Miner. These mining tech-
niques also need to resort to imprecise many-to-many connections to reflect the
unstructuredness that is present in the event logs, especially for Y and Z.

6 Conclusion

In this paper, a model checking approach for mixed-paradigm models was pro-
posed based on automaton multiplication. Furthermore, it was shown how this
notion can be used in a mining environment to find a fit between procedural and
declarative models to achieve models that accurately describe the log with the
right level of granularity in terms of flexibility.

For future work, we envision to use the global automaton to apply confor-
mance checking in order to show in which areas mixed-paradigm models can
excel not only in terms of dealing with mixed-flexibility, but in terms of recall
and precision. Secondly, it will be investigated how coverability graphs can be
used instead of reachability graphs, in order to deal with unbounded behavior
that can occur in procedural models. Finally, Heuristics Miner cannot guarantee
to churn out a deadlock-free model. It is therefore in our plans to integrate the
tool with other procedural process mining algorithms.

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

References

1. van der Aalst, W.M.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

2. Weijters, A., van der Aalst, W.M., De Medeiros, A.A.: Process mining with the
heuristics miner-algorithm. TU Eindhoven, Tech. Rep. WP 166 (2006)

3. van der Aalst, W.M., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004)
1128–1142

4. van der Werf, J.M.E., van Dongen, B.F., Hurkens, C.A., Serebrenik, A.: Process
discovery using integer linear programming. In: Petri Nets. Springer (2008) 368–
387

5. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.: User-guided discovery of declara-
tive process models. In: CIDM, IEEE (2011) 192–199

6. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery
of declarative workflows. In: CIDM, IEEE (2013) 135–142

7. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

8. Pesic, M., Schonenberg, H., van der Aalst, W.M.: Declare: Full support for loosely-
structured processes. In: EDOC, IEEE (2007) 287–287

9. Maggi, F.M., Reijers, H.A., Slaats, T.: The automated discovery of hybrid pro-
cesses. In: BPM. Springer (2014) 392–399

10. De Smedt, J., De Weerdt, J., Vanthienen, J.: Multi-paradigm process mining:
retrieving better models by combining rules and sequences. In: OTM Conferences,
Springer (2014) 446–453

11. De Smedt, J., De Weerdt, J., Vanthienen, J.: Fusion miner: Process discovery for
mixed-paradigm models. Decision Support Systems 77 (2015) 123–136

12. Westergaard, M.: CPN Tools 4: multi-formalism and extensibility. In: Application
and Theory of Petri Nets and Concurrency. Springer (2013) 400–409

13. Pesic, M., van der Aalst, W.M.: A declarative approach for flexible business pro-
cesses management. In: BPM Workshops, Springer (2006) 169–180

14. De Smedt, J., De Weerdt, J., Vanthienen, J., Poels, G.: Mixed-paradigm process
modeling with intertwined state spaces. Bus. & Inf. Systems Eng. (2016) 19–29

15. Westergaard, M., Slaats, T.: Mixing paradigms for more comprehensible models.
In: BPM. Springer (2013) 283–290

16. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Ensuring model consistency
in declarative process discovery. In: BPM. Springer (2015) 144–159

17. Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to imperative
models. In: SIMPDA. (2014) 162–173

18. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manage. Inf. Syst. 5(4) (January 2015) 24:1–24:37

19. Westergaard, M., Stahl, C., Reijers, H.A.: Unconstrainedminer: Efficient discovery
of generalized declarative process models. Technical report, BPMcenter (2013)

20. Desel, J., Reisig, W.: Place/transition petri nets. In: Lectures on Petri Nets I:
Basic Models. Springer (1998) 122–173

21. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Improving understandabil-
ity of declarative process models by revealing hidden dependencies. In: Interna-
tional Conference on Advanced Information Systems Engineering, Springer (2016)
83–98

22. Adriansyah, A., Buijs, J.C.: Mining process performance from event logs. In: BPM
Workshops, Springer (2012) 217–218

Pre-print copy of the manuscript published by Springer (available at link.springer.com)
identified by doi: 10.1007/978-3-319-58457-7_6

This document is a pre-print copy of the manuscript
(De Smedt et al. 2017)

published by Springer (available at link.springer.com).

The final version of the paper is identified by doi: 10.1007/978-3-319-58457-7_6

References

De Smedt, Johannes, Claudio Di Ciccio, Jan Vanthienen, and Jan Mendling (2017). “Model Checking
of Mixed-Paradigm Process Models in a Discovery Context - Finding the Fit Between Declarative
and Procedural”. In: BPM workshops. Ed. by Marlon Dumas and Marcelo Fantinato. Vol. 281.
Lecture Notes in Business Information Processing. Springer, pp. 74–86. isbn: 978-3-319-58456-0.
doi: 10.1007/978-3-319-58457-7_6.

BibTeX
@InProceedings{ DeSmedt.etal/BPI2016:ModelCheckingofMixedParadigmDiscovery,

author = {De Smedt, Johannes and Di Ciccio, Claudio and Jan
Vanthienen and Jan Mendling},

title = {Model Checking of Mixed-Paradigm Process Models in a
Discovery Context - Finding the Fit Between Declarative and
Procedural},

booktitle = {BPM workshops},
year = {2017},
pages = {74--86},
crossref = {BPM2016Workshops},
doi = {10.1007/978-3-319-58457-7_6}

}
@Proceedings{ BPM2016Workshops,

title = {Business Process Management Workshops - {BPM} 2016
International Workshops, Rio de Janeiro, Brazil, September
19, 2016, Revised Papers},

year = {2017},
editor = {Dumas, Marlon and Fantinato, Marcelo},
volume = {281},
series = {Lecture Notes in Business Information Processing},
publisher = {Springer},
isbn = {978-3-319-58456-0},
doi = {10.1007/978-3-319-58457-7}

}

http://link.springer.com/
https://doi.org/10.1007/978-3-319-58457-7_6
https://doi.org/10.1007/978-3-319-58457-7_6

	Model Checking of Mixed-Paradigm Process Models in a Discovery Context

